Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! Let’s approach the problem step by step.
### (a) Design a Maximum a Posteriori Probability (MAP) Test
Given:
- \( E[V] = 4 \) minutes (expected duration of a voice call)
- \( E[D] = 8 \) minutes (expected duration of a data call)
- \( P(V) = 0.8 \) (probability of a voice call)
- \( P(D) = 0.2 \) (probability of a data call)
The Maximum a Posteriori Probability (MAP) test aims to decide between two hypotheses \( H_0 \) (the call is a voice call) and \( H_1 \) (the call is a data call) based on the observed duration \( T \).
For an exponential distribution, the probability density function (PDF) is given by:
[tex]\[ f_X(t) = \frac{1}{\lambda} e^{-t/\lambda} \][/tex]
where \( \lambda \) is the expected value (mean) of the distribution.
For a voice call:
[tex]\[ f_V(t) = \frac{1}{4} e^{-t/4} \][/tex]
For a data call:
[tex]\[ f_D(t) = \frac{1}{8} e^{-t/8} \][/tex]
The MAP test finds a threshold \( T \) such that:
[tex]\[ P(V) f_V(T) = P(D) f_D(T) \][/tex]
Substituting the given probabilities and the PDFs:
[tex]\[ 0.8 \cdot \frac{1}{4} e^{-T/4} = 0.2 \cdot \frac{1}{8} e^{-T/8} \][/tex]
Solving for \( T \):
[tex]\[ \frac{0.8}{4} e^{-T/4} = \frac{0.2}{8} e^{-T/8} \][/tex]
[tex]\[ 0.2 e^{-T/4} = 0.025 e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = \frac{0.025}{0.2} e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = 0.125 e^{-T/8} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} + \frac{T}{8} = \ln(0.125) \][/tex]
Combining terms and simplifying:
[tex]\[ -\frac{2T}{8} + \frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ -\frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ T = -8 \ln(0.125) \][/tex]
Knowing that \( \ln(0.125) = -2 \ln(2) \):
[tex]\[ T = -8 \times (-2 \ln(2)) \][/tex]
[tex]\[ T = 16 \ln(2) \][/tex]
[tex]\[ T \approx 16 \times 0.693 \][/tex]
[tex]\[ T \approx 11.088 \][/tex]
Thus, the threshold \( T \approx 11.088 \) minutes.
### (b) Calculate the Total Error Probability \( P_{\text{ERR}} \)
The total error probability \( P_{\text{ERR}} \) is given by:
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
For an exponential distribution:
- \( P(T > t) = 1 - F(t) = e^{-t / \lambda} \) (complement of the CDF)
- \( P(T < t) = F(t) = 1 - e^{-t / \lambda} \) (CDF)
Where \( \lambda \) represents the expected value.
For \( H_0 \) (voice call, \( \lambda = 4 \)):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} \][/tex]
For \( H_1 \) (data call, \( \lambda = 8 \)):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} \][/tex]
Now, calculate these probabilities:
#### For \( H_0 \):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} = e^{-2.772} \approx 0.0626 \][/tex]
#### For \( H_1 \):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} = 1 - e^{-1.386} \approx 1 - 0.2504 = 0.7496 \][/tex]
Finally, calculate \( P_{\text{ERR}} \):
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
[tex]\[ P_{\text{ERR}} = 0.8 \cdot 0.0626 + 0.2 \cdot 0.7496 \][/tex]
[tex]\[ P_{\text{ERR}} = 0.05008 + 0.14992 \][/tex]
[tex]\[ P_{\text{ERR}} \approx 0.20 \][/tex]
Therefore, the total error probability [tex]\( P_{\text{ERR}} \)[/tex] is approximately [tex]\( 0.20 \)[/tex] or [tex]\( 20\% \)[/tex].
### (a) Design a Maximum a Posteriori Probability (MAP) Test
Given:
- \( E[V] = 4 \) minutes (expected duration of a voice call)
- \( E[D] = 8 \) minutes (expected duration of a data call)
- \( P(V) = 0.8 \) (probability of a voice call)
- \( P(D) = 0.2 \) (probability of a data call)
The Maximum a Posteriori Probability (MAP) test aims to decide between two hypotheses \( H_0 \) (the call is a voice call) and \( H_1 \) (the call is a data call) based on the observed duration \( T \).
For an exponential distribution, the probability density function (PDF) is given by:
[tex]\[ f_X(t) = \frac{1}{\lambda} e^{-t/\lambda} \][/tex]
where \( \lambda \) is the expected value (mean) of the distribution.
For a voice call:
[tex]\[ f_V(t) = \frac{1}{4} e^{-t/4} \][/tex]
For a data call:
[tex]\[ f_D(t) = \frac{1}{8} e^{-t/8} \][/tex]
The MAP test finds a threshold \( T \) such that:
[tex]\[ P(V) f_V(T) = P(D) f_D(T) \][/tex]
Substituting the given probabilities and the PDFs:
[tex]\[ 0.8 \cdot \frac{1}{4} e^{-T/4} = 0.2 \cdot \frac{1}{8} e^{-T/8} \][/tex]
Solving for \( T \):
[tex]\[ \frac{0.8}{4} e^{-T/4} = \frac{0.2}{8} e^{-T/8} \][/tex]
[tex]\[ 0.2 e^{-T/4} = 0.025 e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = \frac{0.025}{0.2} e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = 0.125 e^{-T/8} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} + \frac{T}{8} = \ln(0.125) \][/tex]
Combining terms and simplifying:
[tex]\[ -\frac{2T}{8} + \frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ -\frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ T = -8 \ln(0.125) \][/tex]
Knowing that \( \ln(0.125) = -2 \ln(2) \):
[tex]\[ T = -8 \times (-2 \ln(2)) \][/tex]
[tex]\[ T = 16 \ln(2) \][/tex]
[tex]\[ T \approx 16 \times 0.693 \][/tex]
[tex]\[ T \approx 11.088 \][/tex]
Thus, the threshold \( T \approx 11.088 \) minutes.
### (b) Calculate the Total Error Probability \( P_{\text{ERR}} \)
The total error probability \( P_{\text{ERR}} \) is given by:
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
For an exponential distribution:
- \( P(T > t) = 1 - F(t) = e^{-t / \lambda} \) (complement of the CDF)
- \( P(T < t) = F(t) = 1 - e^{-t / \lambda} \) (CDF)
Where \( \lambda \) represents the expected value.
For \( H_0 \) (voice call, \( \lambda = 4 \)):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} \][/tex]
For \( H_1 \) (data call, \( \lambda = 8 \)):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} \][/tex]
Now, calculate these probabilities:
#### For \( H_0 \):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} = e^{-2.772} \approx 0.0626 \][/tex]
#### For \( H_1 \):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} = 1 - e^{-1.386} \approx 1 - 0.2504 = 0.7496 \][/tex]
Finally, calculate \( P_{\text{ERR}} \):
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
[tex]\[ P_{\text{ERR}} = 0.8 \cdot 0.0626 + 0.2 \cdot 0.7496 \][/tex]
[tex]\[ P_{\text{ERR}} = 0.05008 + 0.14992 \][/tex]
[tex]\[ P_{\text{ERR}} \approx 0.20 \][/tex]
Therefore, the total error probability [tex]\( P_{\text{ERR}} \)[/tex] is approximately [tex]\( 0.20 \)[/tex] or [tex]\( 20\% \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.