Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure! Let’s approach the problem step by step.
### (a) Design a Maximum a Posteriori Probability (MAP) Test
Given:
- \( E[V] = 4 \) minutes (expected duration of a voice call)
- \( E[D] = 8 \) minutes (expected duration of a data call)
- \( P(V) = 0.8 \) (probability of a voice call)
- \( P(D) = 0.2 \) (probability of a data call)
The Maximum a Posteriori Probability (MAP) test aims to decide between two hypotheses \( H_0 \) (the call is a voice call) and \( H_1 \) (the call is a data call) based on the observed duration \( T \).
For an exponential distribution, the probability density function (PDF) is given by:
[tex]\[ f_X(t) = \frac{1}{\lambda} e^{-t/\lambda} \][/tex]
where \( \lambda \) is the expected value (mean) of the distribution.
For a voice call:
[tex]\[ f_V(t) = \frac{1}{4} e^{-t/4} \][/tex]
For a data call:
[tex]\[ f_D(t) = \frac{1}{8} e^{-t/8} \][/tex]
The MAP test finds a threshold \( T \) such that:
[tex]\[ P(V) f_V(T) = P(D) f_D(T) \][/tex]
Substituting the given probabilities and the PDFs:
[tex]\[ 0.8 \cdot \frac{1}{4} e^{-T/4} = 0.2 \cdot \frac{1}{8} e^{-T/8} \][/tex]
Solving for \( T \):
[tex]\[ \frac{0.8}{4} e^{-T/4} = \frac{0.2}{8} e^{-T/8} \][/tex]
[tex]\[ 0.2 e^{-T/4} = 0.025 e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = \frac{0.025}{0.2} e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = 0.125 e^{-T/8} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} + \frac{T}{8} = \ln(0.125) \][/tex]
Combining terms and simplifying:
[tex]\[ -\frac{2T}{8} + \frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ -\frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ T = -8 \ln(0.125) \][/tex]
Knowing that \( \ln(0.125) = -2 \ln(2) \):
[tex]\[ T = -8 \times (-2 \ln(2)) \][/tex]
[tex]\[ T = 16 \ln(2) \][/tex]
[tex]\[ T \approx 16 \times 0.693 \][/tex]
[tex]\[ T \approx 11.088 \][/tex]
Thus, the threshold \( T \approx 11.088 \) minutes.
### (b) Calculate the Total Error Probability \( P_{\text{ERR}} \)
The total error probability \( P_{\text{ERR}} \) is given by:
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
For an exponential distribution:
- \( P(T > t) = 1 - F(t) = e^{-t / \lambda} \) (complement of the CDF)
- \( P(T < t) = F(t) = 1 - e^{-t / \lambda} \) (CDF)
Where \( \lambda \) represents the expected value.
For \( H_0 \) (voice call, \( \lambda = 4 \)):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} \][/tex]
For \( H_1 \) (data call, \( \lambda = 8 \)):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} \][/tex]
Now, calculate these probabilities:
#### For \( H_0 \):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} = e^{-2.772} \approx 0.0626 \][/tex]
#### For \( H_1 \):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} = 1 - e^{-1.386} \approx 1 - 0.2504 = 0.7496 \][/tex]
Finally, calculate \( P_{\text{ERR}} \):
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
[tex]\[ P_{\text{ERR}} = 0.8 \cdot 0.0626 + 0.2 \cdot 0.7496 \][/tex]
[tex]\[ P_{\text{ERR}} = 0.05008 + 0.14992 \][/tex]
[tex]\[ P_{\text{ERR}} \approx 0.20 \][/tex]
Therefore, the total error probability [tex]\( P_{\text{ERR}} \)[/tex] is approximately [tex]\( 0.20 \)[/tex] or [tex]\( 20\% \)[/tex].
### (a) Design a Maximum a Posteriori Probability (MAP) Test
Given:
- \( E[V] = 4 \) minutes (expected duration of a voice call)
- \( E[D] = 8 \) minutes (expected duration of a data call)
- \( P(V) = 0.8 \) (probability of a voice call)
- \( P(D) = 0.2 \) (probability of a data call)
The Maximum a Posteriori Probability (MAP) test aims to decide between two hypotheses \( H_0 \) (the call is a voice call) and \( H_1 \) (the call is a data call) based on the observed duration \( T \).
For an exponential distribution, the probability density function (PDF) is given by:
[tex]\[ f_X(t) = \frac{1}{\lambda} e^{-t/\lambda} \][/tex]
where \( \lambda \) is the expected value (mean) of the distribution.
For a voice call:
[tex]\[ f_V(t) = \frac{1}{4} e^{-t/4} \][/tex]
For a data call:
[tex]\[ f_D(t) = \frac{1}{8} e^{-t/8} \][/tex]
The MAP test finds a threshold \( T \) such that:
[tex]\[ P(V) f_V(T) = P(D) f_D(T) \][/tex]
Substituting the given probabilities and the PDFs:
[tex]\[ 0.8 \cdot \frac{1}{4} e^{-T/4} = 0.2 \cdot \frac{1}{8} e^{-T/8} \][/tex]
Solving for \( T \):
[tex]\[ \frac{0.8}{4} e^{-T/4} = \frac{0.2}{8} e^{-T/8} \][/tex]
[tex]\[ 0.2 e^{-T/4} = 0.025 e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = \frac{0.025}{0.2} e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = 0.125 e^{-T/8} \][/tex]
Taking the natural logarithm on both sides:
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} + \frac{T}{8} = \ln(0.125) \][/tex]
Combining terms and simplifying:
[tex]\[ -\frac{2T}{8} + \frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ -\frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ T = -8 \ln(0.125) \][/tex]
Knowing that \( \ln(0.125) = -2 \ln(2) \):
[tex]\[ T = -8 \times (-2 \ln(2)) \][/tex]
[tex]\[ T = 16 \ln(2) \][/tex]
[tex]\[ T \approx 16 \times 0.693 \][/tex]
[tex]\[ T \approx 11.088 \][/tex]
Thus, the threshold \( T \approx 11.088 \) minutes.
### (b) Calculate the Total Error Probability \( P_{\text{ERR}} \)
The total error probability \( P_{\text{ERR}} \) is given by:
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
For an exponential distribution:
- \( P(T > t) = 1 - F(t) = e^{-t / \lambda} \) (complement of the CDF)
- \( P(T < t) = F(t) = 1 - e^{-t / \lambda} \) (CDF)
Where \( \lambda \) represents the expected value.
For \( H_0 \) (voice call, \( \lambda = 4 \)):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} \][/tex]
For \( H_1 \) (data call, \( \lambda = 8 \)):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} \][/tex]
Now, calculate these probabilities:
#### For \( H_0 \):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} = e^{-2.772} \approx 0.0626 \][/tex]
#### For \( H_1 \):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} = 1 - e^{-1.386} \approx 1 - 0.2504 = 0.7496 \][/tex]
Finally, calculate \( P_{\text{ERR}} \):
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
[tex]\[ P_{\text{ERR}} = 0.8 \cdot 0.0626 + 0.2 \cdot 0.7496 \][/tex]
[tex]\[ P_{\text{ERR}} = 0.05008 + 0.14992 \][/tex]
[tex]\[ P_{\text{ERR}} \approx 0.20 \][/tex]
Therefore, the total error probability [tex]\( P_{\text{ERR}} \)[/tex] is approximately [tex]\( 0.20 \)[/tex] or [tex]\( 20\% \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.