Answered

Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Question 5 (2.0 points)

The duration of a voice telephone call is an exponential random variable \( V \) with an expected value \( E(V) = 4 \) minutes. The duration of a data call is an exponential random variable \( D \) with an expected value \( E(D) = 8 \) minutes. The null hypothesis of a binary hypothesis test is \( H_0 \): "a call is a voice call." The alternative hypothesis is \( H_1 \): "a call is a data call." The probability of a voice call is \( P(V) = 0.8 \) and the probability of a data call is \( P(D) = 0.2 \). Based on \( T \) (minutes), the duration of a call:

(a) Design a maximum a posteriori probability (MAP) test.
(b) Calculate the total error probability [tex]\( P_{\text{ERR}} \)[/tex].


Sagot :

Sure! Let’s approach the problem step by step.

### (a) Design a Maximum a Posteriori Probability (MAP) Test

Given:

- \( E[V] = 4 \) minutes (expected duration of a voice call)
- \( E[D] = 8 \) minutes (expected duration of a data call)
- \( P(V) = 0.8 \) (probability of a voice call)
- \( P(D) = 0.2 \) (probability of a data call)

The Maximum a Posteriori Probability (MAP) test aims to decide between two hypotheses \( H_0 \) (the call is a voice call) and \( H_1 \) (the call is a data call) based on the observed duration \( T \).

For an exponential distribution, the probability density function (PDF) is given by:
[tex]\[ f_X(t) = \frac{1}{\lambda} e^{-t/\lambda} \][/tex]
where \( \lambda \) is the expected value (mean) of the distribution.

For a voice call:
[tex]\[ f_V(t) = \frac{1}{4} e^{-t/4} \][/tex]

For a data call:
[tex]\[ f_D(t) = \frac{1}{8} e^{-t/8} \][/tex]

The MAP test finds a threshold \( T \) such that:
[tex]\[ P(V) f_V(T) = P(D) f_D(T) \][/tex]

Substituting the given probabilities and the PDFs:
[tex]\[ 0.8 \cdot \frac{1}{4} e^{-T/4} = 0.2 \cdot \frac{1}{8} e^{-T/8} \][/tex]

Solving for \( T \):
[tex]\[ \frac{0.8}{4} e^{-T/4} = \frac{0.2}{8} e^{-T/8} \][/tex]
[tex]\[ 0.2 e^{-T/4} = 0.025 e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = \frac{0.025}{0.2} e^{-T/8} \][/tex]
[tex]\[ e^{-T/4} = 0.125 e^{-T/8} \][/tex]

Taking the natural logarithm on both sides:
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} = \ln(0.125) - \frac{T}{8} \][/tex]
[tex]\[ -\frac{T}{4} + \frac{T}{8} = \ln(0.125) \][/tex]
Combining terms and simplifying:
[tex]\[ -\frac{2T}{8} + \frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ -\frac{T}{8} = \ln(0.125) \][/tex]
[tex]\[ T = -8 \ln(0.125) \][/tex]
Knowing that \( \ln(0.125) = -2 \ln(2) \):
[tex]\[ T = -8 \times (-2 \ln(2)) \][/tex]
[tex]\[ T = 16 \ln(2) \][/tex]
[tex]\[ T \approx 16 \times 0.693 \][/tex]
[tex]\[ T \approx 11.088 \][/tex]

Thus, the threshold \( T \approx 11.088 \) minutes.

### (b) Calculate the Total Error Probability \( P_{\text{ERR}} \)

The total error probability \( P_{\text{ERR}} \) is given by:
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]

For an exponential distribution:
- \( P(T > t) = 1 - F(t) = e^{-t / \lambda} \) (complement of the CDF)
- \( P(T < t) = F(t) = 1 - e^{-t / \lambda} \) (CDF)

Where \( \lambda \) represents the expected value.

For \( H_0 \) (voice call, \( \lambda = 4 \)):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} \][/tex]

For \( H_1 \) (data call, \( \lambda = 8 \)):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} \][/tex]

Now, calculate these probabilities:

#### For \( H_0 \):
[tex]\[ P(T > 11.088 | H_0) = e^{-11.088 / 4} = e^{-2.772} \approx 0.0626 \][/tex]

#### For \( H_1 \):
[tex]\[ P(T < 11.088 | H_1) = 1 - e^{-11.088 / 8} = 1 - e^{-1.386} \approx 1 - 0.2504 = 0.7496 \][/tex]

Finally, calculate \( P_{\text{ERR}} \):
[tex]\[ P_{\text{ERR}} = P(H_0) \cdot P(T > 11.088 | H_0) + P(H_1) \cdot P(T < 11.088 | H_1) \][/tex]
[tex]\[ P_{\text{ERR}} = 0.8 \cdot 0.0626 + 0.2 \cdot 0.7496 \][/tex]
[tex]\[ P_{\text{ERR}} = 0.05008 + 0.14992 \][/tex]
[tex]\[ P_{\text{ERR}} \approx 0.20 \][/tex]

Therefore, the total error probability [tex]\( P_{\text{ERR}} \)[/tex] is approximately [tex]\( 0.20 \)[/tex] or [tex]\( 20\% \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.