Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the equations of the lines passing through the point \((2,3)\) and making a \(45^\circ\) angle with the line \(x - 3y = 2\), we proceed as follows:
1. Determine the slope of the given line:
The equation of the line is \(x - 3y = 2\). This can be rewritten in the slope-intercept form \(y = mx + b\).
[tex]\[ y = \frac{1}{3}x - \frac{2}{3} \][/tex]
So the slope (\(m\)) of the given line is \(\frac{1}{3}\).
2. Calculate the slopes of the new lines:
Let \(\theta\) be the angle between the given line and the lines of interest, which is \(45^\circ\). The slopes \(m_1\) and \(m_2\) of the lines that make these angles can be found using the angle addition and subtraction formula for slopes:
[tex]\[ m_1 = \frac{m + \tan\theta}{1 - m\tan\theta} \quad \text{and} \quad m_2 = \frac{m - \tan\theta}{1 + m\tan\theta} \][/tex]
Here, \(m = \frac{1}{3}\) and \(\tan 45^\circ = 1\).
[tex]\[ m_1 = \frac{\frac{1}{3} + 1}{1 - \frac{1}{3} \cdot 1} = \frac{\frac{4}{3}}{\frac{2}{3}} = 2 \][/tex]
[tex]\[ m_2 = \frac{\frac{1}{3} - 1}{1 + \frac{1}{3} \cdot 1} = \frac{\frac{-2}{3}}{\frac{4}{3}} = -\frac{1}{2} \][/tex]
3. Formulate the equations of the new lines:
Using the point-slope form of the equation of a line \(y - y_1 = m(x - x_1)\), where the point \((x_1, y_1)\) is \((2, 3)\):
- For the line with slope \(m_1 = 2\):
[tex]\[ y - 3 = 2(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 1 \][/tex]
- For the line with slope \(m_2 = -\frac{1}{2}\):
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
Thus, the equations of the lines passing through \((2, 3)\) and making an angle of \(45^\circ\) with the line \(x - 3y = 2\) are:
[tex]\[ \boxed{y = 2x - 1 \text{ and } y = -\frac{1}{2}x + 4} \][/tex]
1. Determine the slope of the given line:
The equation of the line is \(x - 3y = 2\). This can be rewritten in the slope-intercept form \(y = mx + b\).
[tex]\[ y = \frac{1}{3}x - \frac{2}{3} \][/tex]
So the slope (\(m\)) of the given line is \(\frac{1}{3}\).
2. Calculate the slopes of the new lines:
Let \(\theta\) be the angle between the given line and the lines of interest, which is \(45^\circ\). The slopes \(m_1\) and \(m_2\) of the lines that make these angles can be found using the angle addition and subtraction formula for slopes:
[tex]\[ m_1 = \frac{m + \tan\theta}{1 - m\tan\theta} \quad \text{and} \quad m_2 = \frac{m - \tan\theta}{1 + m\tan\theta} \][/tex]
Here, \(m = \frac{1}{3}\) and \(\tan 45^\circ = 1\).
[tex]\[ m_1 = \frac{\frac{1}{3} + 1}{1 - \frac{1}{3} \cdot 1} = \frac{\frac{4}{3}}{\frac{2}{3}} = 2 \][/tex]
[tex]\[ m_2 = \frac{\frac{1}{3} - 1}{1 + \frac{1}{3} \cdot 1} = \frac{\frac{-2}{3}}{\frac{4}{3}} = -\frac{1}{2} \][/tex]
3. Formulate the equations of the new lines:
Using the point-slope form of the equation of a line \(y - y_1 = m(x - x_1)\), where the point \((x_1, y_1)\) is \((2, 3)\):
- For the line with slope \(m_1 = 2\):
[tex]\[ y - 3 = 2(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 1 \][/tex]
- For the line with slope \(m_2 = -\frac{1}{2}\):
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
Thus, the equations of the lines passing through \((2, 3)\) and making an angle of \(45^\circ\) with the line \(x - 3y = 2\) are:
[tex]\[ \boxed{y = 2x - 1 \text{ and } y = -\frac{1}{2}x + 4} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.