Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equations of the lines passing through the point \((2,3)\) and making a \(45^\circ\) angle with the line \(x - 3y = 2\), we proceed as follows:
1. Determine the slope of the given line:
The equation of the line is \(x - 3y = 2\). This can be rewritten in the slope-intercept form \(y = mx + b\).
[tex]\[ y = \frac{1}{3}x - \frac{2}{3} \][/tex]
So the slope (\(m\)) of the given line is \(\frac{1}{3}\).
2. Calculate the slopes of the new lines:
Let \(\theta\) be the angle between the given line and the lines of interest, which is \(45^\circ\). The slopes \(m_1\) and \(m_2\) of the lines that make these angles can be found using the angle addition and subtraction formula for slopes:
[tex]\[ m_1 = \frac{m + \tan\theta}{1 - m\tan\theta} \quad \text{and} \quad m_2 = \frac{m - \tan\theta}{1 + m\tan\theta} \][/tex]
Here, \(m = \frac{1}{3}\) and \(\tan 45^\circ = 1\).
[tex]\[ m_1 = \frac{\frac{1}{3} + 1}{1 - \frac{1}{3} \cdot 1} = \frac{\frac{4}{3}}{\frac{2}{3}} = 2 \][/tex]
[tex]\[ m_2 = \frac{\frac{1}{3} - 1}{1 + \frac{1}{3} \cdot 1} = \frac{\frac{-2}{3}}{\frac{4}{3}} = -\frac{1}{2} \][/tex]
3. Formulate the equations of the new lines:
Using the point-slope form of the equation of a line \(y - y_1 = m(x - x_1)\), where the point \((x_1, y_1)\) is \((2, 3)\):
- For the line with slope \(m_1 = 2\):
[tex]\[ y - 3 = 2(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 1 \][/tex]
- For the line with slope \(m_2 = -\frac{1}{2}\):
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
Thus, the equations of the lines passing through \((2, 3)\) and making an angle of \(45^\circ\) with the line \(x - 3y = 2\) are:
[tex]\[ \boxed{y = 2x - 1 \text{ and } y = -\frac{1}{2}x + 4} \][/tex]
1. Determine the slope of the given line:
The equation of the line is \(x - 3y = 2\). This can be rewritten in the slope-intercept form \(y = mx + b\).
[tex]\[ y = \frac{1}{3}x - \frac{2}{3} \][/tex]
So the slope (\(m\)) of the given line is \(\frac{1}{3}\).
2. Calculate the slopes of the new lines:
Let \(\theta\) be the angle between the given line and the lines of interest, which is \(45^\circ\). The slopes \(m_1\) and \(m_2\) of the lines that make these angles can be found using the angle addition and subtraction formula for slopes:
[tex]\[ m_1 = \frac{m + \tan\theta}{1 - m\tan\theta} \quad \text{and} \quad m_2 = \frac{m - \tan\theta}{1 + m\tan\theta} \][/tex]
Here, \(m = \frac{1}{3}\) and \(\tan 45^\circ = 1\).
[tex]\[ m_1 = \frac{\frac{1}{3} + 1}{1 - \frac{1}{3} \cdot 1} = \frac{\frac{4}{3}}{\frac{2}{3}} = 2 \][/tex]
[tex]\[ m_2 = \frac{\frac{1}{3} - 1}{1 + \frac{1}{3} \cdot 1} = \frac{\frac{-2}{3}}{\frac{4}{3}} = -\frac{1}{2} \][/tex]
3. Formulate the equations of the new lines:
Using the point-slope form of the equation of a line \(y - y_1 = m(x - x_1)\), where the point \((x_1, y_1)\) is \((2, 3)\):
- For the line with slope \(m_1 = 2\):
[tex]\[ y - 3 = 2(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = 2x - 4 \][/tex]
[tex]\[ y = 2x - 1 \][/tex]
- For the line with slope \(m_2 = -\frac{1}{2}\):
[tex]\[ y - 3 = -\frac{1}{2}(x - 2) \][/tex]
Simplify to:
[tex]\[ y - 3 = -\frac{1}{2}x + 1 \][/tex]
[tex]\[ y = -\frac{1}{2}x + 4 \][/tex]
Thus, the equations of the lines passing through \((2, 3)\) and making an angle of \(45^\circ\) with the line \(x - 3y = 2\) are:
[tex]\[ \boxed{y = 2x - 1 \text{ and } y = -\frac{1}{2}x + 4} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.
Which word correctly completes the sentence? All around the attic we found many __________ nests. A.