Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Alright, let’s break down this problem step-by-step:
### (a) Finding the constant \( k \)
Given the probability density function (PDF) for \( X \):
[tex]\[ f_X(x) = \begin{cases} k(10-x) & \text{if } 0 \leq x \leq 10 \\ 0 & \text{otherwise} \end{cases} \][/tex]
We need to find the constant \( k \). To do this, we use the property that the total probability over the entire range of \( x \) must equal 1. Hence, we integrate \( f_X(x) \) over its domain and set the integral equal to 1:
[tex]\[ \int_{0}^{10} k(10-x) \, dx = 1 \][/tex]
Now, compute the integral:
[tex]\[ k \int_{0}^{10} (10 - x) \, dx = 1 \][/tex]
We can break this into two simpler integrals:
[tex]\[ k \left[ \int_{0}^{10} 10 \, dx - \int_{0}^{10} x \, dx \right] = 1 \][/tex]
Evaluate each integral separately:
[tex]\[ \int_{0}^{10} 10 \, dx = 10x \big|_0^{10} = 100 \][/tex]
[tex]\[ \int_{0}^{10} x \, dx = \frac{x^2}{2} \big|_0^{10} = \frac{100}{2} = 50 \][/tex]
Therefore, we have:
[tex]\[ k (100 - 50) = 1 \implies k \cdot 50 = 1 \implies k = \frac{1}{50} \][/tex]
So, the constant \( k \) is:
[tex]\[ k = \frac{1}{50} \][/tex]
### (b) Finding the cumulative distribution function (CDF) and the expected value of \( W \)
The random variable \( W \) is defined by \( W = \min\{X, 5\} \). To find the cumulative distribution function (CDF) \( F_W(w) \), we consider the following cases:
1. Case \( w < 0 \): [tex]\[ F_W(w) = 0 \][/tex]
2. Case \( 0 \leq w < 5 \): Here, \( W \) takes the value \( w \) only if \( X \leq w \). Thus,
[tex]\[ F_W(w) = P(W \leq w) = P(X \leq w) = \int_{0}^{w} f_X(x) \, dx = \int_{0}^{w} \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ F_W(w) = \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] \][/tex]
3. Case \( w \geq 5 \): Here, we need to consider two parts:
- For \( 0 \leq x < 5 \), \( W = X \)
- For \( x \geq 5 \), \( W = 5 \)
[tex]\[ F_W(w) = P(W \leq w) = P(X \leq 5) + P(5 \leq w \leq X) \][/tex]
But since \( W \leq 5 \) always when \( X \) is greater or equal to 5:
[tex]\[ F_W(w) = P(X \leq 5) = \int_{0}^{5} \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ \int_{0}^{5} \frac{1}{50}(10 - x) \, dx = \frac{1}{50} \left[ 10x - \frac{x^2}{2} \right] \bigg|_0^{5} = \frac{1}{50} (50 - 12.5) = \frac{37.5}{50} = 0.75 \][/tex]
So, for \( w \geq 5 \):
[tex]\[ F_W(w) = 0.75 \][/tex]
Combining all our results, the CDF \( F_W(w) \) is:
[tex]\[ F_W(w) = \begin{cases} 0 & \text{if } w < 0 \\ \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] & \text{if } 0 \leq w < 5 \\ 0.75 & \text{if } w \geq 5 \end{cases} \][/tex]
### Expected Value of \( W \)
The expected value \( E[W] \) can be found by splitting it into two parts:
1. \( E[X \ | \ X \leq 5] \)
2. \( 5 \cdot P(X > 5) \)
First, compute \( E[X \ | \ X \leq 5] \):
[tex]\[ E[X \ | \ X \leq 5] = \int_{0}^{5} x f_X(x) \, dx = \int_{0}^{5} x \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ \int_{0}^{5} x \frac{1}{50}(10 - x) \, dx = \frac{1}{50} \int_{0}^{5} (10x - x^2) \, dx \][/tex]
[tex]\[ = \frac{1}{50} \left[ 5x^2 - \frac{x^3}{3} \right] \bigg|_0^{5} = \frac{1}{50} \left[ 5(25) - \frac{125}{3} \right] = \frac{1}{50} \left[ 125 - \frac{125}{3} \right] \][/tex]
[tex]\[ = \frac{1}{50} \left[ \frac{375 - 125}{3} \right] = \frac{1}{50} \left[ \frac{250}{3} \right] = \frac{5}{3} \][/tex]
Now, \( E[5 \ | \ X > 5] \):
[tex]\[ E[5 \ | \ X > 5] = 5 \cdot P(X > 5) = 5 \cdot \left( 1 - P(X \leq 5) \right) = 5 \cdot \left( 1 - 0.75 \right) = 5 \cdot (0.25) = 1.25 \][/tex]
Now combine these two results:
[tex]\[ E[W] = \frac{5}{3} + 1.25 = \frac{5}{3} + \frac{5}{4} = \frac{20}{12} + \frac{15}{12} = \frac{35}{12} \approx 2.92 \][/tex]
The expected value is:
[tex]\[ E[W] \approx 2.92 \][/tex]
Thus, we have:
- \( k = \frac{1}{50} \)
- CDF \( F_W(w) \):
[tex]\[ F_W(w) = \begin{cases} 0 & \text{if } w < 0 \\ \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] & \text{if } 0 \leq w < 5 \\ 0.75 & \text{if } w \geq 5 \end{cases} \][/tex]
- Expected value [tex]\( E[W] \approx 2.92 \)[/tex]
### (a) Finding the constant \( k \)
Given the probability density function (PDF) for \( X \):
[tex]\[ f_X(x) = \begin{cases} k(10-x) & \text{if } 0 \leq x \leq 10 \\ 0 & \text{otherwise} \end{cases} \][/tex]
We need to find the constant \( k \). To do this, we use the property that the total probability over the entire range of \( x \) must equal 1. Hence, we integrate \( f_X(x) \) over its domain and set the integral equal to 1:
[tex]\[ \int_{0}^{10} k(10-x) \, dx = 1 \][/tex]
Now, compute the integral:
[tex]\[ k \int_{0}^{10} (10 - x) \, dx = 1 \][/tex]
We can break this into two simpler integrals:
[tex]\[ k \left[ \int_{0}^{10} 10 \, dx - \int_{0}^{10} x \, dx \right] = 1 \][/tex]
Evaluate each integral separately:
[tex]\[ \int_{0}^{10} 10 \, dx = 10x \big|_0^{10} = 100 \][/tex]
[tex]\[ \int_{0}^{10} x \, dx = \frac{x^2}{2} \big|_0^{10} = \frac{100}{2} = 50 \][/tex]
Therefore, we have:
[tex]\[ k (100 - 50) = 1 \implies k \cdot 50 = 1 \implies k = \frac{1}{50} \][/tex]
So, the constant \( k \) is:
[tex]\[ k = \frac{1}{50} \][/tex]
### (b) Finding the cumulative distribution function (CDF) and the expected value of \( W \)
The random variable \( W \) is defined by \( W = \min\{X, 5\} \). To find the cumulative distribution function (CDF) \( F_W(w) \), we consider the following cases:
1. Case \( w < 0 \): [tex]\[ F_W(w) = 0 \][/tex]
2. Case \( 0 \leq w < 5 \): Here, \( W \) takes the value \( w \) only if \( X \leq w \). Thus,
[tex]\[ F_W(w) = P(W \leq w) = P(X \leq w) = \int_{0}^{w} f_X(x) \, dx = \int_{0}^{w} \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ F_W(w) = \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] \][/tex]
3. Case \( w \geq 5 \): Here, we need to consider two parts:
- For \( 0 \leq x < 5 \), \( W = X \)
- For \( x \geq 5 \), \( W = 5 \)
[tex]\[ F_W(w) = P(W \leq w) = P(X \leq 5) + P(5 \leq w \leq X) \][/tex]
But since \( W \leq 5 \) always when \( X \) is greater or equal to 5:
[tex]\[ F_W(w) = P(X \leq 5) = \int_{0}^{5} \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ \int_{0}^{5} \frac{1}{50}(10 - x) \, dx = \frac{1}{50} \left[ 10x - \frac{x^2}{2} \right] \bigg|_0^{5} = \frac{1}{50} (50 - 12.5) = \frac{37.5}{50} = 0.75 \][/tex]
So, for \( w \geq 5 \):
[tex]\[ F_W(w) = 0.75 \][/tex]
Combining all our results, the CDF \( F_W(w) \) is:
[tex]\[ F_W(w) = \begin{cases} 0 & \text{if } w < 0 \\ \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] & \text{if } 0 \leq w < 5 \\ 0.75 & \text{if } w \geq 5 \end{cases} \][/tex]
### Expected Value of \( W \)
The expected value \( E[W] \) can be found by splitting it into two parts:
1. \( E[X \ | \ X \leq 5] \)
2. \( 5 \cdot P(X > 5) \)
First, compute \( E[X \ | \ X \leq 5] \):
[tex]\[ E[X \ | \ X \leq 5] = \int_{0}^{5} x f_X(x) \, dx = \int_{0}^{5} x \frac{1}{50}(10 - x) \, dx \][/tex]
Evaluate the integral:
[tex]\[ \int_{0}^{5} x \frac{1}{50}(10 - x) \, dx = \frac{1}{50} \int_{0}^{5} (10x - x^2) \, dx \][/tex]
[tex]\[ = \frac{1}{50} \left[ 5x^2 - \frac{x^3}{3} \right] \bigg|_0^{5} = \frac{1}{50} \left[ 5(25) - \frac{125}{3} \right] = \frac{1}{50} \left[ 125 - \frac{125}{3} \right] \][/tex]
[tex]\[ = \frac{1}{50} \left[ \frac{375 - 125}{3} \right] = \frac{1}{50} \left[ \frac{250}{3} \right] = \frac{5}{3} \][/tex]
Now, \( E[5 \ | \ X > 5] \):
[tex]\[ E[5 \ | \ X > 5] = 5 \cdot P(X > 5) = 5 \cdot \left( 1 - P(X \leq 5) \right) = 5 \cdot \left( 1 - 0.75 \right) = 5 \cdot (0.25) = 1.25 \][/tex]
Now combine these two results:
[tex]\[ E[W] = \frac{5}{3} + 1.25 = \frac{5}{3} + \frac{5}{4} = \frac{20}{12} + \frac{15}{12} = \frac{35}{12} \approx 2.92 \][/tex]
The expected value is:
[tex]\[ E[W] \approx 2.92 \][/tex]
Thus, we have:
- \( k = \frac{1}{50} \)
- CDF \( F_W(w) \):
[tex]\[ F_W(w) = \begin{cases} 0 & \text{if } w < 0 \\ \frac{1}{50} \left[ 10w - \frac{w^2}{2} \right] & \text{if } 0 \leq w < 5 \\ 0.75 & \text{if } w \geq 5 \end{cases} \][/tex]
- Expected value [tex]\( E[W] \approx 2.92 \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.