At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the quadratic equation that best fits the given table of values, we assume that the relationship between \(y\) and \(x\) can be described by a quadratic equation of the form:
[tex]\[ y = ax^2 + bx + c \][/tex]
We are given the following data points:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 4 \\ 1 & 7 \\ 2 & 16 \\ 3 & 31 \\ 4 & 52 \\ \end{array} \][/tex]
We can substitute these points into the quadratic equation to formulate a system of linear equations.
### Step-by-Step Solution
1. Substitute \(x = 0\) and \(y = 4\) into the equation:
[tex]\[ 4 = a(0)^2 + b(0) + c \][/tex]
[tex]\[ 4 = c \][/tex]
So, \( c = 4 \).
2. Substitute \(x = 1\) and \(y = 7\) into the equation:
[tex]\[ 7 = a(1)^2 + b(1) + c \][/tex]
Since \( c = 4 \):
[tex]\[ 7 = a + b + 4 \][/tex]
[tex]\[ 7 - 4 = a + b \][/tex]
[tex]\[ 3 = a + b \][/tex]
3. Substitute \(x = 2\) and \(y = 16\) into the equation:
[tex]\[ 16 = a(2)^2 + b(2) + c \][/tex]
Since \( c = 4 \):
[tex]\[ 16 = 4a + 2b + 4 \][/tex]
[tex]\[ 16 - 4 = 4a + 2b \][/tex]
[tex]\[ 12 = 4a + 2b \][/tex]
[tex]\[ 6 = 2a + b \][/tex]
4. We now have two equations from steps 2 and 3:
[tex]\[ 3 = a + b \][/tex]
[tex]\[ 6 = 2a + b \][/tex]
To solve for \(a\) and \(b\), we can subtract the first equation from the second:
[tex]\[ (2a + b) - (a + b) = 6 - 3 \][/tex]
Simplifying, we get:
[tex]\[ a = 3 \][/tex]
Substituting \(a = 3\) back into the first equation:
[tex]\[ 3 = 3 + b \][/tex]
[tex]\[ b = 0 \][/tex]
### Conclusion
Thus, we have found the coefficients:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 0 \][/tex]
[tex]\[ c = 4 \][/tex]
The quadratic equation describing the relationship between \( y \) and \( x \) is:
[tex]\[ y = 3x^2 + 0x + 4 \][/tex]
[tex]\[ y = 3x^2 + 4 \][/tex]
This quadratic equation fits the given table of values perfectly.
[tex]\[ y = ax^2 + bx + c \][/tex]
We are given the following data points:
[tex]\[ \begin{array}{c|c} x & y \\ \hline 0 & 4 \\ 1 & 7 \\ 2 & 16 \\ 3 & 31 \\ 4 & 52 \\ \end{array} \][/tex]
We can substitute these points into the quadratic equation to formulate a system of linear equations.
### Step-by-Step Solution
1. Substitute \(x = 0\) and \(y = 4\) into the equation:
[tex]\[ 4 = a(0)^2 + b(0) + c \][/tex]
[tex]\[ 4 = c \][/tex]
So, \( c = 4 \).
2. Substitute \(x = 1\) and \(y = 7\) into the equation:
[tex]\[ 7 = a(1)^2 + b(1) + c \][/tex]
Since \( c = 4 \):
[tex]\[ 7 = a + b + 4 \][/tex]
[tex]\[ 7 - 4 = a + b \][/tex]
[tex]\[ 3 = a + b \][/tex]
3. Substitute \(x = 2\) and \(y = 16\) into the equation:
[tex]\[ 16 = a(2)^2 + b(2) + c \][/tex]
Since \( c = 4 \):
[tex]\[ 16 = 4a + 2b + 4 \][/tex]
[tex]\[ 16 - 4 = 4a + 2b \][/tex]
[tex]\[ 12 = 4a + 2b \][/tex]
[tex]\[ 6 = 2a + b \][/tex]
4. We now have two equations from steps 2 and 3:
[tex]\[ 3 = a + b \][/tex]
[tex]\[ 6 = 2a + b \][/tex]
To solve for \(a\) and \(b\), we can subtract the first equation from the second:
[tex]\[ (2a + b) - (a + b) = 6 - 3 \][/tex]
Simplifying, we get:
[tex]\[ a = 3 \][/tex]
Substituting \(a = 3\) back into the first equation:
[tex]\[ 3 = 3 + b \][/tex]
[tex]\[ b = 0 \][/tex]
### Conclusion
Thus, we have found the coefficients:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 0 \][/tex]
[tex]\[ c = 4 \][/tex]
The quadratic equation describing the relationship between \( y \) and \( x \) is:
[tex]\[ y = 3x^2 + 0x + 4 \][/tex]
[tex]\[ y = 3x^2 + 4 \][/tex]
This quadratic equation fits the given table of values perfectly.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.