At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the roots of the quadratic equation \( x^2 - 4x + 3 = 0 \), we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = -4 \), and \( c = 3 \).
1. First, identify the coefficients:
- \( a = 1 \)
- \( b = -4 \)
- \( c = 3 \)
2. Calculate the discriminant \( \Delta \) using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4 \][/tex]
3. Since the discriminant is positive (\(\Delta = 4\)), the quadratic equation has two distinct real roots.
4. Now, use the quadratic formula to find the roots. The solutions are:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{4 + \sqrt{4}}{2 \cdot 1} = \frac{4 + 2}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x_2 = \frac{4 - \sqrt{4}}{2 \cdot 1} = \frac{4 - 2}{2} = \frac{2}{2} = 1 \][/tex]
Therefore, the roots of the equation \( x^2 - 4x + 3 = 0 \) are \( x = 3 \) and \( x = 1 \).
In terms of coordinates, these roots can be represented as the points where the equation \( y = x^2 - 4x + 3 \) intersects the x-axis:
- The coordinates of the first root are \( (3, 0) \).
- The coordinates of the second root are \( (1, 0) \).
So, the coordinates of the roots are [tex]\( (3, 0) \)[/tex] and [tex]\( (1, 0) \)[/tex].
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, \( a = 1 \), \( b = -4 \), and \( c = 3 \).
1. First, identify the coefficients:
- \( a = 1 \)
- \( b = -4 \)
- \( c = 3 \)
2. Calculate the discriminant \( \Delta \) using the formula:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values:
[tex]\[ \Delta = (-4)^2 - 4 \cdot 1 \cdot 3 = 16 - 12 = 4 \][/tex]
3. Since the discriminant is positive (\(\Delta = 4\)), the quadratic equation has two distinct real roots.
4. Now, use the quadratic formula to find the roots. The solutions are:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substituting the values:
[tex]\[ x_1 = \frac{4 + \sqrt{4}}{2 \cdot 1} = \frac{4 + 2}{2} = \frac{6}{2} = 3 \][/tex]
[tex]\[ x_2 = \frac{4 - \sqrt{4}}{2 \cdot 1} = \frac{4 - 2}{2} = \frac{2}{2} = 1 \][/tex]
Therefore, the roots of the equation \( x^2 - 4x + 3 = 0 \) are \( x = 3 \) and \( x = 1 \).
In terms of coordinates, these roots can be represented as the points where the equation \( y = x^2 - 4x + 3 \) intersects the x-axis:
- The coordinates of the first root are \( (3, 0) \).
- The coordinates of the second root are \( (1, 0) \).
So, the coordinates of the roots are [tex]\( (3, 0) \)[/tex] and [tex]\( (1, 0) \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.