At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze each of the predictions about the function \( f(x) \) using the given data points.
1. Prediction: \( f(x) \geq 0 \) over the interval \([5, \infty)\)
- We need to check if \( f(x) \) is non-negative (i.e., \( f(x) \geq 0 \)) for all \( x \geq 5 \).
- Looking at the data for \( x \geq 5 \):
- When \( x = 5 \), \( f(5) = 0 \).
- When \( x = 7 \), \( f(7) = 4 \).
- Both \( f(5) \) and \( f(7) \) are non-negative.
Therefore, this prediction is valid.
2. Prediction: \( f(x) \leq 0 \) over the interval \([-1, \infty)\)
- We need to check if \( f(x) \) is non-positive (i.e., \( f(x) \leq 0 \)) for all \( x \geq -1 \).
- Looking at the data for \( x \geq -1 \):
- When \( x = -1 \), \( f(-1) = 0 \).
- When \( x = 1 \), \( f(1) = -2 \).
- When \( x = 3 \), \( f(3) = -2 \).
- When \( x = 5 \), \( f(5) = 0 \).
- When \( x = 7 \), \( f(7) = 4 \).
- Here, \( f(7) = 4 \) is not non-positive.
Therefore, this prediction is invalid.
3. Prediction: \( f(x) > 0 \) over the interval \((-\infty, 1)\)
- We need to check if \( f(x) \) is positive (i.e., \( f(x) > 0 \)) for all \( x < 1 \).
- Looking at the data for \( x < 1 \):
- When \( x = -5 \), \( f(-5) = 8 \).
- When \( x = -3 \), \( f(-3) = 4 \).
- When \( x = -1 \), \( f(-1) = 0 \).
- Here, \( f(-1) = 0 \) is not positive.
Therefore, this prediction is invalid.
4. Prediction: \( f(x) < 0 \) over the interval \((-\infty,-1)\)
- We need to check if \( f(x) \) is negative (i.e., \( f(x) < 0 \)) for all \( x < -1 \).
- Looking at the data for \( x < -1 \):
- When \( x = -5 \), \( f(-5) = 8 \).
- When \( x = -3 \), \( f(-3) = 4 \).
Therefore, this prediction is invalid.
In conclusion, the only valid prediction about the continuous function \( f(x) \) is:
[tex]\[ f(x) \geq 0 \, \text{over the interval} \, [5, \infty). \][/tex]
1. Prediction: \( f(x) \geq 0 \) over the interval \([5, \infty)\)
- We need to check if \( f(x) \) is non-negative (i.e., \( f(x) \geq 0 \)) for all \( x \geq 5 \).
- Looking at the data for \( x \geq 5 \):
- When \( x = 5 \), \( f(5) = 0 \).
- When \( x = 7 \), \( f(7) = 4 \).
- Both \( f(5) \) and \( f(7) \) are non-negative.
Therefore, this prediction is valid.
2. Prediction: \( f(x) \leq 0 \) over the interval \([-1, \infty)\)
- We need to check if \( f(x) \) is non-positive (i.e., \( f(x) \leq 0 \)) for all \( x \geq -1 \).
- Looking at the data for \( x \geq -1 \):
- When \( x = -1 \), \( f(-1) = 0 \).
- When \( x = 1 \), \( f(1) = -2 \).
- When \( x = 3 \), \( f(3) = -2 \).
- When \( x = 5 \), \( f(5) = 0 \).
- When \( x = 7 \), \( f(7) = 4 \).
- Here, \( f(7) = 4 \) is not non-positive.
Therefore, this prediction is invalid.
3. Prediction: \( f(x) > 0 \) over the interval \((-\infty, 1)\)
- We need to check if \( f(x) \) is positive (i.e., \( f(x) > 0 \)) for all \( x < 1 \).
- Looking at the data for \( x < 1 \):
- When \( x = -5 \), \( f(-5) = 8 \).
- When \( x = -3 \), \( f(-3) = 4 \).
- When \( x = -1 \), \( f(-1) = 0 \).
- Here, \( f(-1) = 0 \) is not positive.
Therefore, this prediction is invalid.
4. Prediction: \( f(x) < 0 \) over the interval \((-\infty,-1)\)
- We need to check if \( f(x) \) is negative (i.e., \( f(x) < 0 \)) for all \( x < -1 \).
- Looking at the data for \( x < -1 \):
- When \( x = -5 \), \( f(-5) = 8 \).
- When \( x = -3 \), \( f(-3) = 4 \).
Therefore, this prediction is invalid.
In conclusion, the only valid prediction about the continuous function \( f(x) \) is:
[tex]\[ f(x) \geq 0 \, \text{over the interval} \, [5, \infty). \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.