Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which type of model best fits the given data, we can analyze the behavior of the number of views over the days.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.