Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which type of model best fits the given data, we can analyze the behavior of the number of views over the days.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.