Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which type of model best fits the given data, we can analyze the behavior of the number of views over the days.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
Given data:
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline x \, (\text{days}) & 0 & 1 & 2 & 3 & 4 \\ \hline y \, (\text{number of views}) & 3600 & 1800 & 900 & 450 & 225 \\ \hline \end{array} \][/tex]
First, let's look at how the values of \( y \) change as \( x \) increases:
- From day 0 to day 1: \( \frac{1800}{3600} = 0.5 \)
- From day 1 to day 2: \( \frac{900}{1800} = 0.5 \)
- From day 2 to day 3: \( \frac{450}{900} = 0.5 \)
- From day 3 to day 4: \( \frac{225}{450} = 0.5 \)
We notice that each successive value of \( y \) is half (or 0.5 times) the previous value. This consistent ratio suggests that the number of views is decreasing by the same factor each day.
In an exponential decay model, the quantity decreases by a consistent factor over equal intervals of time. The pattern here fits that description, as each day's view count is 50% (or a factor of 0.5) of the previous day's count.
Since the number of views decreases by a consistent factor (0.5) each day, the data fits an Exponential decay model.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.