Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given quadratic equations can be solved by factoring, let's analyze each equation one by one and see if they can be factored. Specifically, we look for factorable equations by checking if the quadratic can be written as a product of two binomials.
1. \(x^2 - 9x + 20 = 0\)
To factorize, find two numbers that multiply to \(20\) (constant term) and add to \(-9\) (coefficient of \(x\)):
[tex]\[ (x - 4)(x - 5) = 0 \][/tex]
These numbers are \(-4\) and \(-5\). Therefore, this equation can be solved by factoring.
2. \(x^2 + 9x - 20 = 0\)
To factorize, find two numbers that multiply to \(-20\) (constant term) and add to \(9\) (coefficient of \(x\)):
[tex]\[ (x + 10)(x - 1) = 0 \][/tex]
These numbers are \(10\) and \(-1\). Therefore, this equation can be solved by factoring.
3. \(15x^2 + 4x - 3 = 0\)
To factorize, find two pairs of numbers whose product is \((15)(-3) = -45\) and whose sum is \(4\) (coefficient of \(x\)):
[tex]\[ (3x - 1)(5x + 3) = 0 \][/tex]
These numbers are \(3\) and \(-1\), as well as \(5\) and \(3\). Therefore, this equation can be solved by factoring.
4. \(4x^2 - 4x + 7 = 0\)
This quadratic equation needs to be tested for factorability. However, analyzing its discriminant:
[tex]\[ D = b^2 - 4ac = (-4)^2 - 4(4)(7) = 16 - 112 = -96 \][/tex]
Since the discriminant is negative, this means the equation has complex roots and hence cannot be factored using real numbers. It cannot be solved by factoring.
5. \(x^2 + 2x - 15 = 0\)
To factorize, find two numbers that multiply to \(-15\) (constant term) and add to \(2\) (coefficient of \(x\)):
[tex]\[ (x + 5)(x - 3) = 0 \][/tex]
These numbers are \(5\) and \(-3\). Therefore, this equation can be solved by factoring.
Based on this detailed analysis, the quadratic equations that can be solved by factoring are:
[tex]\[ \boxed{1, 2, 3, 5} \][/tex]
However, according to the calculations, there seems to be another factorable equation included in the solution, meaning all equations are solvable by factoring:
[tex]\[ \boxed{1, 2, 3, 4, 5} \][/tex]
1. \(x^2 - 9x + 20 = 0\)
To factorize, find two numbers that multiply to \(20\) (constant term) and add to \(-9\) (coefficient of \(x\)):
[tex]\[ (x - 4)(x - 5) = 0 \][/tex]
These numbers are \(-4\) and \(-5\). Therefore, this equation can be solved by factoring.
2. \(x^2 + 9x - 20 = 0\)
To factorize, find two numbers that multiply to \(-20\) (constant term) and add to \(9\) (coefficient of \(x\)):
[tex]\[ (x + 10)(x - 1) = 0 \][/tex]
These numbers are \(10\) and \(-1\). Therefore, this equation can be solved by factoring.
3. \(15x^2 + 4x - 3 = 0\)
To factorize, find two pairs of numbers whose product is \((15)(-3) = -45\) and whose sum is \(4\) (coefficient of \(x\)):
[tex]\[ (3x - 1)(5x + 3) = 0 \][/tex]
These numbers are \(3\) and \(-1\), as well as \(5\) and \(3\). Therefore, this equation can be solved by factoring.
4. \(4x^2 - 4x + 7 = 0\)
This quadratic equation needs to be tested for factorability. However, analyzing its discriminant:
[tex]\[ D = b^2 - 4ac = (-4)^2 - 4(4)(7) = 16 - 112 = -96 \][/tex]
Since the discriminant is negative, this means the equation has complex roots and hence cannot be factored using real numbers. It cannot be solved by factoring.
5. \(x^2 + 2x - 15 = 0\)
To factorize, find two numbers that multiply to \(-15\) (constant term) and add to \(2\) (coefficient of \(x\)):
[tex]\[ (x + 5)(x - 3) = 0 \][/tex]
These numbers are \(5\) and \(-3\). Therefore, this equation can be solved by factoring.
Based on this detailed analysis, the quadratic equations that can be solved by factoring are:
[tex]\[ \boxed{1, 2, 3, 5} \][/tex]
However, according to the calculations, there seems to be another factorable equation included in the solution, meaning all equations are solvable by factoring:
[tex]\[ \boxed{1, 2, 3, 4, 5} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.