Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Amir made an error in his calculations. Let's identify Amir's mistake and then solve the expression \(5x - (x + 3)^2\) correctly for \(x = 2\).
### Identify Amir's Mistake:
Amir's evaluation was:
[tex]\[ 5(2) - (2+3)^2 = 10 + (-5)^2 = 10 + 25 = 35 \][/tex]
- First, Amir correctly calculates the product \(5 \cdot 2\), which is \(10\).
- Next, he correctly computes \(2 + 3\), which gives \(5\).
- The mistake is in the part \((-5)^2\). Instead of correctly computing the square of \(5\), Amir mistakenly considers \( -5 \) and squares it, giving \( (-5)^2 = 25\). However, in the expression provided, there is no negative term.
### Correct Solution:
1. First term calculation:
[tex]\[ 5x \quad \text{for} \quad x = 2 \\ 5(2) = 10 \][/tex]
2. Second term calculation:
[tex]\[ (x + 3)^2 \quad \text{for} \quad x = 2 \\ (2 + 3)^2 = 5^2 = 25 \][/tex]
3. Combine the results:
[tex]\[ 5x - (x + 3)^2 = 10 - 25 \][/tex]
4. Final answer:
[tex]\[ 10 - 25 = -15 \][/tex]
The correct value of \(5x - (x + 3)^2\) for \(x = 2\) is \(-15\).
Hence, Amir's mistake was in the sign and calculation of the square term. The correct evaluation gives the result:
[tex]\[ 5(2) - (2 + 3)^2 = 10 - 25 = -15 \][/tex]
### Identify Amir's Mistake:
Amir's evaluation was:
[tex]\[ 5(2) - (2+3)^2 = 10 + (-5)^2 = 10 + 25 = 35 \][/tex]
- First, Amir correctly calculates the product \(5 \cdot 2\), which is \(10\).
- Next, he correctly computes \(2 + 3\), which gives \(5\).
- The mistake is in the part \((-5)^2\). Instead of correctly computing the square of \(5\), Amir mistakenly considers \( -5 \) and squares it, giving \( (-5)^2 = 25\). However, in the expression provided, there is no negative term.
### Correct Solution:
1. First term calculation:
[tex]\[ 5x \quad \text{for} \quad x = 2 \\ 5(2) = 10 \][/tex]
2. Second term calculation:
[tex]\[ (x + 3)^2 \quad \text{for} \quad x = 2 \\ (2 + 3)^2 = 5^2 = 25 \][/tex]
3. Combine the results:
[tex]\[ 5x - (x + 3)^2 = 10 - 25 \][/tex]
4. Final answer:
[tex]\[ 10 - 25 = -15 \][/tex]
The correct value of \(5x - (x + 3)^2\) for \(x = 2\) is \(-15\).
Hence, Amir's mistake was in the sign and calculation of the square term. The correct evaluation gives the result:
[tex]\[ 5(2) - (2 + 3)^2 = 10 - 25 = -15 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.