Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which algebraic expression Oneta could have written given the constraints:
1. The [tex]$y$[/tex]-term has a coefficient of -3.
2. The [tex]$x$[/tex]-term has a coefficient of 1.
3. The expression does not have a constant term.
Let's analyze the given options one by one:
1. \( x - y^2 - 3y \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the given condition.
- The [tex]$y$[/tex]-term here is \(-3y\), which has a coefficient of -3, also matching the given condition.
- There is no constant term in the expression.
- Therefore, this expression fits all the given criteria.
2. \( x - 3y + 6 \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of -3, which also matches the condition.
- However, the expression includes a constant term of 6, which does not fit the condition of having no constant term.
- Therefore, this expression does not meet all the criteria.
3. \( x + 3y^2 + 3y \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of 3, not -3.
- There is no constant term in the expression.
- Therefore, this expression does not meet the criteria regarding the [tex]$y$[/tex]-term's coefficient.
4. \( x + 3y + 7 \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of 3, not -3.
- The expression includes a constant term of 7, which does not fit the condition of having no constant term.
- Therefore, this expression does not meet multiple criteria.
From the analysis above, the only expression that matches all the conditions given is:
[tex]\[ x - y^2 - 3y \][/tex]
So, Oneta could have written the expression [tex]\( x - y^2 - 3y \)[/tex].
1. The [tex]$y$[/tex]-term has a coefficient of -3.
2. The [tex]$x$[/tex]-term has a coefficient of 1.
3. The expression does not have a constant term.
Let's analyze the given options one by one:
1. \( x - y^2 - 3y \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the given condition.
- The [tex]$y$[/tex]-term here is \(-3y\), which has a coefficient of -3, also matching the given condition.
- There is no constant term in the expression.
- Therefore, this expression fits all the given criteria.
2. \( x - 3y + 6 \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of -3, which also matches the condition.
- However, the expression includes a constant term of 6, which does not fit the condition of having no constant term.
- Therefore, this expression does not meet all the criteria.
3. \( x + 3y^2 + 3y \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of 3, not -3.
- There is no constant term in the expression.
- Therefore, this expression does not meet the criteria regarding the [tex]$y$[/tex]-term's coefficient.
4. \( x + 3y + 7 \):
- The [tex]$x$[/tex]-term has a coefficient of 1, which matches the condition.
- The [tex]$y$[/tex]-term has a coefficient of 3, not -3.
- The expression includes a constant term of 7, which does not fit the condition of having no constant term.
- Therefore, this expression does not meet multiple criteria.
From the analysis above, the only expression that matches all the conditions given is:
[tex]\[ x - y^2 - 3y \][/tex]
So, Oneta could have written the expression [tex]\( x - y^2 - 3y \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.