Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

An atom has the electron configuration [tex]$1s^2 \, 2s^2 \, 2p^6 \, 3s^2 \, 3p^2$[/tex]. How many valence electrons does the atom have?

Sagot :

To determine the number of valence electrons for an atom with the given electron configuration \(1s^2 2s^2 2p^6 3s^2 3p^2\), let's follow these steps:

1. Identify the electron configuration:
- The given electron configuration is \(1s^2 2s^2 2p^6 3s^2 3p^2\).

2. Determine the outermost shell or energy level:
- The outermost shell is the one with the highest principal quantum number \(n\).
- In this configuration, the highest \(n\) is 3 (associated with 3s and 3p orbitals).

3. Count the electrons in the outermost shell:
- The 3s subshell has 2 electrons (\(3s^2\)).
- The 3p subshell has 2 electrons (\(3p^2\)).

4. Sum the electrons in the outermost shell to find the valence electrons:
- In the 3rd shell: electrons in 3s subshell + electrons in 3p subshell.
- \(3s^2\) contributes 2 electrons.
- \(3p^2\) contributes 2 electrons.

5. Add these numbers together:
- \(2 \text{ (from } 3s^2\text{) } + 2 \text{ (from } 3p^2\text{) } = 4\) valence electrons.

Therefore, the atom has [tex]\(\boxed{4}\)[/tex] valence electrons.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.