Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the functions \( f(x) = x^2 \), \( g(x) = 2x + 1 \), and \( h(x) = \sqrt{x} \) are one-to-one, we need to analyze each function and determine if each input \( x \) maps to a unique output \( y \).
### Function \( f(x) = x^2 \)
1. Recall that a function is one-to-one if different inputs map to different outputs.
2. Let’s assume \( f(x_1) = f(x_2) \):
[tex]\[ x_1^2 = x_2^2 \][/tex]
3. This implies:
[tex]\[ x_1 = x_2 \quad \text{or} \quad x_1 = -x_2 \][/tex]
This shows that different inputs (e.g., \( x_1 = 2 \) and \( x_2 = -2 \)) can map to the same output (e.g., \( 4 \)).
4. Therefore, \( f(x) = x^2 \) is not one-to-one.
### Function \( g(x) = 2x + 1 \)
1. Assume \( g(x_1) = g(x_2) \):
[tex]\[ 2x_1 + 1 = 2x_2 + 1 \][/tex]
2. Subtracting 1 from both sides:
[tex]\[ 2x_1 = 2x_2 \][/tex]
3. Dividing both sides by 2:
[tex]\[ x_1 = x_2 \][/tex]
This shows that different inputs \( x_1 \) and \( x_2 \) must be the same if the outputs are the same.
4. Therefore, \( g(x) = 2x + 1 \) is one-to-one.
### Function \( h(x) = \sqrt{x} \)
1. Assume \( h(x_1) = h(x_2) \):
[tex]\[ \sqrt{x_1} = \sqrt{x_2} \][/tex]
2. Squaring both sides:
[tex]\[ x_1 = x_2 \][/tex]
This shows that different inputs \( x_1 \) and \( x_2 \) must be the same if the outputs are the same.
3. Therefore, \( h(x) = \sqrt{x} \) is one-to-one on its domain (non-negative real numbers).
Based on this analysis:
- \( f(x) = x^2 \) is not one-to-one (because it maps both \( x \) and \( -x \) to the same value).
- \( g(x) = 2x + 1 \) is one-to-one.
- \( h(x) = \sqrt{x} \) is one-to-one.
Therefore, the correct answer is B: [tex]\( g \)[/tex] only.
### Function \( f(x) = x^2 \)
1. Recall that a function is one-to-one if different inputs map to different outputs.
2. Let’s assume \( f(x_1) = f(x_2) \):
[tex]\[ x_1^2 = x_2^2 \][/tex]
3. This implies:
[tex]\[ x_1 = x_2 \quad \text{or} \quad x_1 = -x_2 \][/tex]
This shows that different inputs (e.g., \( x_1 = 2 \) and \( x_2 = -2 \)) can map to the same output (e.g., \( 4 \)).
4. Therefore, \( f(x) = x^2 \) is not one-to-one.
### Function \( g(x) = 2x + 1 \)
1. Assume \( g(x_1) = g(x_2) \):
[tex]\[ 2x_1 + 1 = 2x_2 + 1 \][/tex]
2. Subtracting 1 from both sides:
[tex]\[ 2x_1 = 2x_2 \][/tex]
3. Dividing both sides by 2:
[tex]\[ x_1 = x_2 \][/tex]
This shows that different inputs \( x_1 \) and \( x_2 \) must be the same if the outputs are the same.
4. Therefore, \( g(x) = 2x + 1 \) is one-to-one.
### Function \( h(x) = \sqrt{x} \)
1. Assume \( h(x_1) = h(x_2) \):
[tex]\[ \sqrt{x_1} = \sqrt{x_2} \][/tex]
2. Squaring both sides:
[tex]\[ x_1 = x_2 \][/tex]
This shows that different inputs \( x_1 \) and \( x_2 \) must be the same if the outputs are the same.
3. Therefore, \( h(x) = \sqrt{x} \) is one-to-one on its domain (non-negative real numbers).
Based on this analysis:
- \( f(x) = x^2 \) is not one-to-one (because it maps both \( x \) and \( -x \) to the same value).
- \( g(x) = 2x + 1 \) is one-to-one.
- \( h(x) = \sqrt{x} \) is one-to-one.
Therefore, the correct answer is B: [tex]\( g \)[/tex] only.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.