Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

2000/10 Theory Exercise 6.7

(a) If \( g: x \rightarrow \frac{2x-1}{5x+3} \) for all \( x \in \mathbb{R} \), the set of real numbers, find the:
(i) Domain of \( g \)

(b) Determine whether or not \( g \) in 6.7(a) is onto.

(c) Find the range of values of [tex]\( x \)[/tex] for which [tex]\( 2x^2 + x - 6 \ \textless \ 0 \)[/tex].


Sagot :

Sure, let's tackle each part of the question step by step.

### Part (a): Domain of \( g(x) = \frac{2x - 1}{5x + 3} \)

The domain of a function consists of all the possible input values (x-values) for which the function is defined. For the function \( g(x) = \frac{2x - 1}{5x + 3} \), the denominator \( 5x + 3 \) must not be zero because division by zero is undefined.

1. Set the denominator equal to zero and solve for \( x \):
[tex]\[ 5x + 3 = 0 \][/tex]
[tex]\[ 5x = -3 \][/tex]
[tex]\[ x = -\frac{3}{5} \][/tex]

2. Therefore, \( g(x) \) is undefined at \( x = -\frac{3}{5} \) and the domain of \( g(x) \) is all real numbers except \( x = -\frac{3}{5} \).

In interval notation, the domain of \( g(x) \) is:
[tex]\[ (-\infty, -\frac{3}{5}) \cup (-\frac{3}{5}, \infty) \][/tex]

### Part (b): Determine if \( g \) is onto

To determine if \( g(x) = \frac{2x - 1}{5x + 3} \) is onto, we need to check if every possible output value (y-value) has a corresponding input value (x-value) such that \( y = g(x) \). Specifically, we need to determine if the function covers all real numbers as outputs.

1. Set up the equation \( y = \frac{2x - 1}{5x + 3} \) and solve for \( x \):
[tex]\[ y(5x + 3) = 2x - 1 \][/tex]
[tex]\[ 5xy + 3y = 2x - 1 \][/tex]
[tex]\[ 5xy - 2x = -3y - 1 \][/tex]
[tex]\[ x(5y - 2) = -3y - 1 \][/tex]
[tex]\[ x = \frac{-3y - 1}{5y - 2} \][/tex]

2. To ensure that there exists an \( x \) for every \( y \), we need the expression \( \frac{-3y - 1}{5y - 2} \) to be defined for all real numbers \( y \). This expression is defined for all \( y \) except where the denominator \( 5y - 2 \) is zero:
[tex]\[ 5y - 2 = 0 \][/tex]
[tex]\[ y = \frac{2}{5} \][/tex]

Thus, the function is not onto because the function cannot produce the value \( y = \frac{2}{5} \). Hence, \( g(x) \) is not onto.

### Part (c): Range of \( x \) for which \( 2x^2 + x - 6 < 0 \)

To find the range of \( x \) for which \( 2x^2 + x - 6 < 0 \), we need to solve the inequality \( 2x^2 + x - 6 < 0 \).

1. First, solve the quadratic equation \( 2x^2 + x - 6 = 0 \) to find its roots:
[tex]\[ 2x^2 + x - 6 = 0 \][/tex]
Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \), where \( a = 2 \), \( b = 1 \), and \( c = -6 \):
[tex]\[ x = \frac{-1 \pm \sqrt{1 + 48}}{4} \][/tex]
[tex]\[ x = \frac{-1 \pm 7}{4} \][/tex]
[tex]\[ x_1 = \frac{-1 + 7}{4} = \frac{6}{4} = \frac{3}{2} \][/tex]
[tex]\[ x_2 = \frac{-1 - 7}{4} = \frac{-8}{4} = -2 \][/tex]

2. The roots \( x = \frac{3}{2} \) and \( x = -2 \) divide the number line into three intervals: \( (-\infty, -2) \), \( (-2, \frac{3}{2}) \), and \( (\frac{3}{2}, \infty) \).

3. Test a value from each interval to determine where the quadratic expression is negative:
- For \( x \in (-\infty, -2) \): Test \( x = -3 \)
[tex]\[ 2(-3)^2 + (-3) - 6 = 18 - 3 - 6 = 9 > 0 \][/tex]
- For \( x \in (-2, \frac{3}{2}) \): Test \( x = 0 \)
[tex]\[ 2(0)^2 + 0 - 6 = -6 < 0 \][/tex]
- For \( x \in (\frac{3}{2}, \infty) \): Test \( x = 2 \)
[tex]\[ 2(2)^2 + 2 - 6 = 8 + 2 - 6 = 4 > 0 \][/tex]

4. Hence, the quadratic expression \( 2x^2 + x - 6 \) is negative in the interval \( (-2, \frac{3}{2}) \).

In interval notation, the solution is:
[tex]\[ x \in \left( -2, \frac{3}{2} \right) \][/tex]

To summarize:
- The domain of \( g(x) \) is \( (-\infty, -\frac{3}{5}) \cup (-\frac{3}{5}, \infty) \).
- The function \( g(x) \) is not onto.
- The range of [tex]\( x \)[/tex] for which [tex]\( 2x^2 + x - 6 < 0 \)[/tex] is [tex]\( \left( -2, \frac{3}{2} \right) \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.