Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which ion has a noble gas electron configuration, we should start by understanding what a noble gas electron configuration is. Noble gases have completely filled energy levels, which makes them particularly stable. The electron configuration of a noble gas is fully occupied up to a certain principal quantum number.
Now, let’s analyze each of the ions provided:
1. \( Be^{2-} \) ion:
Beryllium normally has an electron configuration of \( 1s^2 2s^2 \). When it gains 2 electrons (forming \( Be^{2-} \)), its configuration becomes:
[tex]\[ 1s^2 2s^2 2p^2 \][/tex]
This does not match any noble gas configuration because it has more electrons than helium (1s^2) and fewer than neon (1s^2 2s^2 2p^6).
2. \( Na \) (sodium) atom:
Sodium normally has an electron configuration of \( 1s^2 2s^2 2p^6 3s^1 \).
3. \( Na^+ \) (sodium ion):
When sodium loses one electron to form \( Na^+ \), the electron configuration becomes:
[tex]\[ 1s^2 2s^2 2p^6 \][/tex]
This configuration matches the electron configuration of neon (Ne), a noble gas.
4. \( Na^{2+} \) ion:
This is a hypothetical ion, as sodium prefers to lose only one electron to achieve a stable configuration. However, its electron configuration would be:
[tex]\[ 1s^2 2s^2 2p^6 3s^{-1} \][/tex]
The negative exponent on the \( 3s \) orbital denotes something that is not physically possible in a stable, neutral atom or ion, indicating an incorrect configuration.
5. \( Be^+ \) ion:
Beryllium with one less electron would have the configuration:
[tex]\[ 1s^2 2s^1 \][/tex]
This is not a noble gas configuration.
Therefore, out of the ions given, \( Na^+ \) (Option 3) is the ion that has a noble gas electron configuration. The noble gas configuration referred to is that of neon (Ne), which is:
[tex]\[ 1s^2 2s^2 2p^6 \][/tex]
So, the correct answer is:
[tex]\( Na^+ \)[/tex] (Option 3)
Now, let’s analyze each of the ions provided:
1. \( Be^{2-} \) ion:
Beryllium normally has an electron configuration of \( 1s^2 2s^2 \). When it gains 2 electrons (forming \( Be^{2-} \)), its configuration becomes:
[tex]\[ 1s^2 2s^2 2p^2 \][/tex]
This does not match any noble gas configuration because it has more electrons than helium (1s^2) and fewer than neon (1s^2 2s^2 2p^6).
2. \( Na \) (sodium) atom:
Sodium normally has an electron configuration of \( 1s^2 2s^2 2p^6 3s^1 \).
3. \( Na^+ \) (sodium ion):
When sodium loses one electron to form \( Na^+ \), the electron configuration becomes:
[tex]\[ 1s^2 2s^2 2p^6 \][/tex]
This configuration matches the electron configuration of neon (Ne), a noble gas.
4. \( Na^{2+} \) ion:
This is a hypothetical ion, as sodium prefers to lose only one electron to achieve a stable configuration. However, its electron configuration would be:
[tex]\[ 1s^2 2s^2 2p^6 3s^{-1} \][/tex]
The negative exponent on the \( 3s \) orbital denotes something that is not physically possible in a stable, neutral atom or ion, indicating an incorrect configuration.
5. \( Be^+ \) ion:
Beryllium with one less electron would have the configuration:
[tex]\[ 1s^2 2s^1 \][/tex]
This is not a noble gas configuration.
Therefore, out of the ions given, \( Na^+ \) (Option 3) is the ion that has a noble gas electron configuration. The noble gas configuration referred to is that of neon (Ne), which is:
[tex]\[ 1s^2 2s^2 2p^6 \][/tex]
So, the correct answer is:
[tex]\( Na^+ \)[/tex] (Option 3)
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.