Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Given the ion options and the requirement that the ion should have eight valence electrons, let's analyze each ion's electron configuration step by step.
1. Scandium (Sc) \(^{4+}\):
- Scandium has an atomic number of 21 with the electron configuration \([Ar] 3d^1 4s^2\).
- When Scandium loses 4 electrons (to form Sc\(^{4+}\)), it loses all electrons from the 3d and 4s orbitals.
- This means Sc\(^{4+}\) reverts to the electron configuration of \([Ar]\) (Argon).
- Argon has 8 valence electrons in its outer shell.
- However, these are core electrons now in the ion Sc\(^{4+}\), and no electrons remain in the outermost energy level.
2. Titanium (Ti) \(^{4+}\):
- Titanium has an atomic number of 22 with the electron configuration \([Ar] 3d^2 4s^2\).
- When Titanium loses 4 electrons (to form Ti\(^{4+}\)), it loses all electrons from the 3d and 4s orbitals.
- This means Ti\(^{4+}\) reverts to the electron configuration of \([Ar]\).
- Argon has 8 valence electrons in its outer shell, but again, none remain valence electrons in the ion Ti\(^{4+}\).
3. Chromium (Cr) \(^{4+}\):
- Chromium has an atomic number of 24 with the electron configuration \([Ar] 3d^5 4s^1\).
- When Chromium loses 4 electrons (to form Cr\(^{4+}\)), it will lose electrons from both 3d and 4s orbitals.
- This results in Cr\(^{4+}\) having the electron configuration \([Ar] 3d^1\).
- This leaves 1 electron in the outermost orbits, not satisfying the 8 valence electron condition.
4. Manganese (Mn) \(^{4+}\):
- Manganese has an atomic number of 25 with the electron configuration \([Ar] 3d^5 4s^2\).
- When Manganese loses 4 electrons (to form Mn\(^{4+}\)), it will lose electrons from both 3d and 4s orbitals.
- The configuration of Mn\(^{4+}\) becomes \([Ar] 3d^3\).
- This leaves 3 valence electrons, not satisfying the 8 valence electron requirement.
5. Vanadium (V) \(^{4+}\):
- Vanadium has an atomic number of 23 with the electron configuration \([Ar] 3d^3 4s^2\).
- When Vanadium loses 4 electrons (to form V\(^{4+}\)), it loses electrons from both 3d and 4s orbitals.
- This results in V\(^{4+}\) having the electron configuration \([Ar] 3d^1\).
- This leaves 1 valence electron, not satisfying the 8 valence electron condition.
Given all the information above, none of the given ions (Sc\(^{4+}\), Ti\(^{4+}\), Cr\(^{4+}\), Mn\(^{4+}\), and V\(^{4+}\)) satisfies the condition of having eight valence electrons. Therefore, the result is:
None.
1. Scandium (Sc) \(^{4+}\):
- Scandium has an atomic number of 21 with the electron configuration \([Ar] 3d^1 4s^2\).
- When Scandium loses 4 electrons (to form Sc\(^{4+}\)), it loses all electrons from the 3d and 4s orbitals.
- This means Sc\(^{4+}\) reverts to the electron configuration of \([Ar]\) (Argon).
- Argon has 8 valence electrons in its outer shell.
- However, these are core electrons now in the ion Sc\(^{4+}\), and no electrons remain in the outermost energy level.
2. Titanium (Ti) \(^{4+}\):
- Titanium has an atomic number of 22 with the electron configuration \([Ar] 3d^2 4s^2\).
- When Titanium loses 4 electrons (to form Ti\(^{4+}\)), it loses all electrons from the 3d and 4s orbitals.
- This means Ti\(^{4+}\) reverts to the electron configuration of \([Ar]\).
- Argon has 8 valence electrons in its outer shell, but again, none remain valence electrons in the ion Ti\(^{4+}\).
3. Chromium (Cr) \(^{4+}\):
- Chromium has an atomic number of 24 with the electron configuration \([Ar] 3d^5 4s^1\).
- When Chromium loses 4 electrons (to form Cr\(^{4+}\)), it will lose electrons from both 3d and 4s orbitals.
- This results in Cr\(^{4+}\) having the electron configuration \([Ar] 3d^1\).
- This leaves 1 electron in the outermost orbits, not satisfying the 8 valence electron condition.
4. Manganese (Mn) \(^{4+}\):
- Manganese has an atomic number of 25 with the electron configuration \([Ar] 3d^5 4s^2\).
- When Manganese loses 4 electrons (to form Mn\(^{4+}\)), it will lose electrons from both 3d and 4s orbitals.
- The configuration of Mn\(^{4+}\) becomes \([Ar] 3d^3\).
- This leaves 3 valence electrons, not satisfying the 8 valence electron requirement.
5. Vanadium (V) \(^{4+}\):
- Vanadium has an atomic number of 23 with the electron configuration \([Ar] 3d^3 4s^2\).
- When Vanadium loses 4 electrons (to form V\(^{4+}\)), it loses electrons from both 3d and 4s orbitals.
- This results in V\(^{4+}\) having the electron configuration \([Ar] 3d^1\).
- This leaves 1 valence electron, not satisfying the 8 valence electron condition.
Given all the information above, none of the given ions (Sc\(^{4+}\), Ti\(^{4+}\), Cr\(^{4+}\), Mn\(^{4+}\), and V\(^{4+}\)) satisfies the condition of having eight valence electrons. Therefore, the result is:
None.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.