Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's analyze each of the points \((1,0)\), \((-1,1)\), \((2,2)\), and \((0,3)\) to determine if they satisfy both inequalities:
1. \( y > -3x + 3 \)
2. \( y \geq 2x - 2 \)
### Checking Point \((1, 0)\)
For the inequalities:
1. \( 0 > -3(1) + 3 \)
- Calculate the right side: \( -3(1) + 3 = -3 + 3 = 0 \)
- The inequality becomes \( 0 > 0 \), which is false.
2. \( 0 \geq 2(1) - 2 \)
- Calculate the right side: \( 2(1) - 2 = 2 - 2 = 0 \)
- The inequality becomes \( 0 \geq 0 \), which is true.
Since the first inequality is false, the point \((1, 0)\) does not satisfy both inequalities.
### Checking Point \((-1, 1)\)
For the inequalities:
1. \( 1 > -3(-1) + 3 \)
- Calculate the right side: \( -3(-1) + 3 = 3 + 3 = 6 \)
- The inequality becomes \( 1 > 6 \), which is false.
2. \( 1 \geq 2(-1) - 2 \)
- Calculate the right side: \( 2(-1) - 2 = -2 - 2 = -4 \)
- The inequality becomes \( 1 \geq -4 \), which is true.
Since the first inequality is false, the point \((-1, 1)\) does not satisfy both inequalities.
### Checking Point \((2, 2)\)
For the inequalities:
1. \( 2 > -3(2) + 3 \)
- Calculate the right side: \( -3(2) + 3 = -6 + 3 = -3 \)
- The inequality becomes \( 2 > -3 \), which is true.
2. \( 2 \geq 2(2) - 2 \)
- Calculate the right side: \( 2(2) - 2 = 4 - 2 = 2 \)
- The inequality becomes \( 2 \geq 2 \), which is true.
Since both inequalities are true, the point \((2, 2)\) does satisfy both inequalities.
### Checking Point \((0, 3)\)
For the inequalities:
1. \( 3 > -3(0) + 3 \)
- Calculate the right side: \( -3(0) + 3 = 0 + 3 = 3 \)
- The inequality becomes \( 3 > 3 \), which is false.
2. \( 3 \geq 2(0) - 2 \)
- Calculate the right side: \( 2(0) - 2 = 0 - 2 = -2 \)
- The inequality becomes \( 3 \geq -2 \), which is true.
Since the first inequality is false, the point \((0, 3)\) does not satisfy both inequalities.
### Summary
Only the point \((2, 2)\) satisfies both inequalities. The results for each point are:
- \((1, 0)\): false
- \((-1, 1)\): false
- \((2, 2)\): true
- \((0, 3)\): false
So, the final results are:
[tex]\[ [False, False, True, False] \][/tex]
1. \( y > -3x + 3 \)
2. \( y \geq 2x - 2 \)
### Checking Point \((1, 0)\)
For the inequalities:
1. \( 0 > -3(1) + 3 \)
- Calculate the right side: \( -3(1) + 3 = -3 + 3 = 0 \)
- The inequality becomes \( 0 > 0 \), which is false.
2. \( 0 \geq 2(1) - 2 \)
- Calculate the right side: \( 2(1) - 2 = 2 - 2 = 0 \)
- The inequality becomes \( 0 \geq 0 \), which is true.
Since the first inequality is false, the point \((1, 0)\) does not satisfy both inequalities.
### Checking Point \((-1, 1)\)
For the inequalities:
1. \( 1 > -3(-1) + 3 \)
- Calculate the right side: \( -3(-1) + 3 = 3 + 3 = 6 \)
- The inequality becomes \( 1 > 6 \), which is false.
2. \( 1 \geq 2(-1) - 2 \)
- Calculate the right side: \( 2(-1) - 2 = -2 - 2 = -4 \)
- The inequality becomes \( 1 \geq -4 \), which is true.
Since the first inequality is false, the point \((-1, 1)\) does not satisfy both inequalities.
### Checking Point \((2, 2)\)
For the inequalities:
1. \( 2 > -3(2) + 3 \)
- Calculate the right side: \( -3(2) + 3 = -6 + 3 = -3 \)
- The inequality becomes \( 2 > -3 \), which is true.
2. \( 2 \geq 2(2) - 2 \)
- Calculate the right side: \( 2(2) - 2 = 4 - 2 = 2 \)
- The inequality becomes \( 2 \geq 2 \), which is true.
Since both inequalities are true, the point \((2, 2)\) does satisfy both inequalities.
### Checking Point \((0, 3)\)
For the inequalities:
1. \( 3 > -3(0) + 3 \)
- Calculate the right side: \( -3(0) + 3 = 0 + 3 = 3 \)
- The inequality becomes \( 3 > 3 \), which is false.
2. \( 3 \geq 2(0) - 2 \)
- Calculate the right side: \( 2(0) - 2 = 0 - 2 = -2 \)
- The inequality becomes \( 3 \geq -2 \), which is true.
Since the first inequality is false, the point \((0, 3)\) does not satisfy both inequalities.
### Summary
Only the point \((2, 2)\) satisfies both inequalities. The results for each point are:
- \((1, 0)\): false
- \((-1, 1)\): false
- \((2, 2)\): true
- \((0, 3)\): false
So, the final results are:
[tex]\[ [False, False, True, False] \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.