Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the diameter of the circular window, we can use some properties of circles and right triangles. Here's a step-by-step approach to solve the problem:
1. Identify the Known Measurements:
- The "horizontal shelf" is 8 feet long. This shelf acts as a chord of the circle.
- The "brace" is 2 feet long. This brace reaches from the midpoint of the chord to the center of the circle and is perpendicular to the chord.
2. Visualize the Geometry:
- Let's place the chord (shelf) horizontally with its midpoint directly below the center of the circle.
- The brace is a vertical line from the midpoint of the chord to the center.
3. Form a Right Triangle:
- The brace acts as one leg of the right triangle. Its length is 2 feet.
- Half of the chord's length is another leg of the right triangle. The length of half the chord is \( \frac{8}{2} = 4 \) feet.
- The radius of the circle is the hypotenuse of this right triangle.
4. Apply the Pythagorean Theorem:
- According to the Pythagorean theorem, in a right triangle with legs \( a \) and \( b \), and hypotenuse \( c \), the relationship is \( a^2 + b^2 = c^2 \).
- Here, \( a = 2 \) feet (brace), \( b = 4 \) feet (half-chord), and \( c \) (radius) is what we are trying to find.
5. Calculate the Radius:
- Substitute the known values into the Pythagorean Theorem equation:
[tex]\[ 2^2 + 4^2 = \text{radius}^2 \][/tex]
[tex]\[ 4 + 16 = \text{radius}^2 \][/tex]
[tex]\[ \text{radius}^2 = 20 \][/tex]
[tex]\[ \text{radius} = \sqrt{20} \approx 4.472 \][/tex]
6. Calculate the Diameter:
- The diameter of the circle is twice the radius.
- Therefore, the diameter \( \text{diameter} = 2 \times 4.472 \).
7. Final Answer:
- The diameter of the window is approximately \( \boxed{8.944} \) feet.
Thus, the diameter of the circular window is approximately 8.944 feet.
1. Identify the Known Measurements:
- The "horizontal shelf" is 8 feet long. This shelf acts as a chord of the circle.
- The "brace" is 2 feet long. This brace reaches from the midpoint of the chord to the center of the circle and is perpendicular to the chord.
2. Visualize the Geometry:
- Let's place the chord (shelf) horizontally with its midpoint directly below the center of the circle.
- The brace is a vertical line from the midpoint of the chord to the center.
3. Form a Right Triangle:
- The brace acts as one leg of the right triangle. Its length is 2 feet.
- Half of the chord's length is another leg of the right triangle. The length of half the chord is \( \frac{8}{2} = 4 \) feet.
- The radius of the circle is the hypotenuse of this right triangle.
4. Apply the Pythagorean Theorem:
- According to the Pythagorean theorem, in a right triangle with legs \( a \) and \( b \), and hypotenuse \( c \), the relationship is \( a^2 + b^2 = c^2 \).
- Here, \( a = 2 \) feet (brace), \( b = 4 \) feet (half-chord), and \( c \) (radius) is what we are trying to find.
5. Calculate the Radius:
- Substitute the known values into the Pythagorean Theorem equation:
[tex]\[ 2^2 + 4^2 = \text{radius}^2 \][/tex]
[tex]\[ 4 + 16 = \text{radius}^2 \][/tex]
[tex]\[ \text{radius}^2 = 20 \][/tex]
[tex]\[ \text{radius} = \sqrt{20} \approx 4.472 \][/tex]
6. Calculate the Diameter:
- The diameter of the circle is twice the radius.
- Therefore, the diameter \( \text{diameter} = 2 \times 4.472 \).
7. Final Answer:
- The diameter of the window is approximately \( \boxed{8.944} \) feet.
Thus, the diameter of the circular window is approximately 8.944 feet.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.