Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's solve the problem step by step:
Part (a): Writing the Linear Equation
Given points:
- \((x_1, y_1) = (50, 27.50)\)
- \((x_2, y_2) = (400, 115.00)\)
A linear equation can be written in the form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
1. Calculate the slope \(m\):
[tex]\[ m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{(115.00 - 27.50)}{(400 - 50)} = \frac{87.50}{350} = 0.25 \][/tex]
2. Calculate the y-intercept \(b\):
Using the point \((x_1, y_1)\):
[tex]\[ b = y_1 - mx_1 \][/tex]
[tex]\[ b = 27.50 - (0.25 \times 50) = 27.50 - 12.50 = 15.00 \][/tex]
So, the linear equation is:
[tex]\[ y = 0.25x + 15.0 \][/tex]
Part (b): Finding the Number of Cups Produced for $130.00
Given the linear equation we derived:
[tex]\[ y = 0.25x + 15.0 \][/tex]
We need to find \(x\) when the cost \(y\) is $130.00:
[tex]\[ 130.00 = 0.25x + 15.0 \][/tex]
Solving for \(x\):
[tex]\[ 130.00 - 15.00 = 0.25x \][/tex]
[tex]\[ 115.00 = 0.25x \][/tex]
[tex]\[ x = \frac{115.00}{0.25} = 460 \][/tex]
Summary:
- The linear equation that expresses the cost \(y\) in terms of the number of cups of coffee \(x\) is \(y = 0.25x + 15.0\).
- If the cost of production is $130.00, the total number of cups produced is [tex]\(460\)[/tex] cups.
Part (a): Writing the Linear Equation
Given points:
- \((x_1, y_1) = (50, 27.50)\)
- \((x_2, y_2) = (400, 115.00)\)
A linear equation can be written in the form \(y = mx + b\), where \(m\) is the slope and \(b\) is the y-intercept.
1. Calculate the slope \(m\):
[tex]\[ m = \frac{(y_2 - y_1)}{(x_2 - x_1)} \][/tex]
[tex]\[ m = \frac{(115.00 - 27.50)}{(400 - 50)} = \frac{87.50}{350} = 0.25 \][/tex]
2. Calculate the y-intercept \(b\):
Using the point \((x_1, y_1)\):
[tex]\[ b = y_1 - mx_1 \][/tex]
[tex]\[ b = 27.50 - (0.25 \times 50) = 27.50 - 12.50 = 15.00 \][/tex]
So, the linear equation is:
[tex]\[ y = 0.25x + 15.0 \][/tex]
Part (b): Finding the Number of Cups Produced for $130.00
Given the linear equation we derived:
[tex]\[ y = 0.25x + 15.0 \][/tex]
We need to find \(x\) when the cost \(y\) is $130.00:
[tex]\[ 130.00 = 0.25x + 15.0 \][/tex]
Solving for \(x\):
[tex]\[ 130.00 - 15.00 = 0.25x \][/tex]
[tex]\[ 115.00 = 0.25x \][/tex]
[tex]\[ x = \frac{115.00}{0.25} = 460 \][/tex]
Summary:
- The linear equation that expresses the cost \(y\) in terms of the number of cups of coffee \(x\) is \(y = 0.25x + 15.0\).
- If the cost of production is $130.00, the total number of cups produced is [tex]\(460\)[/tex] cups.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.