Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the simplest form of the given product of expressions, let's break it down step-by-step.
Given:
[tex]\[ \left( \frac{x+10}{x^2 + 7x - 18} \right) \cdot \left( \frac{3x^2 - 12x + 12}{3x + 30} \right) \][/tex]
### Step 1: Factorize the Denominators and Numerators
First, let's factorize the polynomials in the denominators and numerators.
#### Numerator and Denominator of the First Expression:
[tex]\[ \frac{x+10}{x^2 + 7x - 18} \][/tex]
The denominator \(x^2 + 7x - 18\) can be factorized:
[tex]\[ x^2 + 7x - 18 = (x + 9)(x - 2) \][/tex]
So, the first expression becomes:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \][/tex]
#### Numerator and Denominator of the Second Expression:
[tex]\[ \frac{3x^2 - 12x + 12}{3x + 30} \][/tex]
Factor out a common factor:
Numerator: \( 3x^2 - 12x + 12 = 3(x^2 - 4x + 4) = 3(x - 2)^2 \)
Denominator: \( 3x + 30 = 3(x + 10) \)
So, the second expression becomes:
[tex]\[ \frac{3(x - 2)^2}{3(x + 10)} \][/tex]
### Step 2: Simplify the Product of the Expressions
Now, combine the simplified forms of both expressions:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \cdot \frac{3(x - 2)^2}{3(x + 10)} \][/tex]
Notice that \(3\) in the numerator and denominator will cancel out. Also, \(x+10\) in the numerator of the first fraction and the denominator of the second fraction will cancel out.
This gives us:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \cdot \frac{(x - 2)^2}{(x + 10)} \][/tex]
Cancel out \(x + 10\) and simplify the remaining:
[tex]\[ \frac{(x-2)^2}{(x + 9)(x - 2)} \][/tex]
One \( (x - 2) \) in the numerator and denominator cancels out:
[tex]\[ \frac{x - 2}{x + 9} \][/tex]
We reach the simplest form:
[tex]\[ \boxed{\frac{x - 2}{x + 9}} \][/tex]
Given:
[tex]\[ \left( \frac{x+10}{x^2 + 7x - 18} \right) \cdot \left( \frac{3x^2 - 12x + 12}{3x + 30} \right) \][/tex]
### Step 1: Factorize the Denominators and Numerators
First, let's factorize the polynomials in the denominators and numerators.
#### Numerator and Denominator of the First Expression:
[tex]\[ \frac{x+10}{x^2 + 7x - 18} \][/tex]
The denominator \(x^2 + 7x - 18\) can be factorized:
[tex]\[ x^2 + 7x - 18 = (x + 9)(x - 2) \][/tex]
So, the first expression becomes:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \][/tex]
#### Numerator and Denominator of the Second Expression:
[tex]\[ \frac{3x^2 - 12x + 12}{3x + 30} \][/tex]
Factor out a common factor:
Numerator: \( 3x^2 - 12x + 12 = 3(x^2 - 4x + 4) = 3(x - 2)^2 \)
Denominator: \( 3x + 30 = 3(x + 10) \)
So, the second expression becomes:
[tex]\[ \frac{3(x - 2)^2}{3(x + 10)} \][/tex]
### Step 2: Simplify the Product of the Expressions
Now, combine the simplified forms of both expressions:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \cdot \frac{3(x - 2)^2}{3(x + 10)} \][/tex]
Notice that \(3\) in the numerator and denominator will cancel out. Also, \(x+10\) in the numerator of the first fraction and the denominator of the second fraction will cancel out.
This gives us:
[tex]\[ \frac{x+10}{(x + 9)(x - 2)} \cdot \frac{(x - 2)^2}{(x + 10)} \][/tex]
Cancel out \(x + 10\) and simplify the remaining:
[tex]\[ \frac{(x-2)^2}{(x + 9)(x - 2)} \][/tex]
One \( (x - 2) \) in the numerator and denominator cancels out:
[tex]\[ \frac{x - 2}{x + 9} \][/tex]
We reach the simplest form:
[tex]\[ \boxed{\frac{x - 2}{x + 9}} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.