Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the difference in the time it takes Jesse to travel upstream and downstream, we start with the given expression:
[tex]\[ \frac{8}{5-c} - \frac{8}{5+c} \][/tex]
We need to simplify this expression.
Step 1: Identify a common denominator
The common denominator for the two fractions is \((5 - c)(5 + c)\).
Step 2: Rewrite each fraction with the common denominator
To achieve this, we multiply the numerator and the denominator of each fraction by the necessary term to obtain the common denominator:
[tex]\[ \frac{8}{5-c} \cdot \frac{5+c}{5+c} = \frac{8(5+c)}{(5-c)(5+c)} \][/tex]
[tex]\[ \frac{8}{5+c} \cdot \frac{5-c}{5-c} = \frac{8(5-c)}{(5-c)(5+c)} \][/tex]
Step 3: Combine the fractions over the common denominator
Now we can subtract the two fractions:
[tex]\[ \frac{8(5+c)}{(5-c)(5+c)} - \frac{8(5-c)}{(5-c)(5+c)} \][/tex]
Since they have the same denominator, we can combine the numerators:
[tex]\[ \frac{8(5+c) - 8(5-c)}{(5-c)(5+c)} \][/tex]
Step 4: Simplify the numerator
Distribute the 8 in each part of the numerator:
[tex]\[ 8(5+c) = 40 + 8c \][/tex]
[tex]\[ 8(5-c) = 40 - 8c \][/tex]
Substitute these back into the expression:
[tex]\[ \frac{40 + 8c - (40 - 8c)}{(5-c)(5+c)} = \frac{40 + 8c - 40 + 8c}{(5-c)(5+c)} \][/tex]
Combine like terms in the numerator:
[tex]\[ \frac{40 + 8c - 40 + 8c}{(5-c)(5+c)} = \frac{16c}{(5-c)(5+c)} \][/tex]
Step 5: Simplify the denominator
Recognize that \((5-c)(5+c)\) is a difference of squares:
[tex]\[ (5-c)(5+c) = 25 - c^2 \][/tex]
Substitute this back into the expression:
[tex]\[ \frac{16c}{25 - c^2} \][/tex]
Thus, the simplified form of the expression representing the time difference is:
[tex]\[ - \frac{16c}{c^2 - 25} \][/tex]
Therefore, the difference in the time it takes Jesse to travel upstream and downstream is:
[tex]\[ - \frac{16c}{c^2 - 25} \][/tex]
[tex]\[ \frac{8}{5-c} - \frac{8}{5+c} \][/tex]
We need to simplify this expression.
Step 1: Identify a common denominator
The common denominator for the two fractions is \((5 - c)(5 + c)\).
Step 2: Rewrite each fraction with the common denominator
To achieve this, we multiply the numerator and the denominator of each fraction by the necessary term to obtain the common denominator:
[tex]\[ \frac{8}{5-c} \cdot \frac{5+c}{5+c} = \frac{8(5+c)}{(5-c)(5+c)} \][/tex]
[tex]\[ \frac{8}{5+c} \cdot \frac{5-c}{5-c} = \frac{8(5-c)}{(5-c)(5+c)} \][/tex]
Step 3: Combine the fractions over the common denominator
Now we can subtract the two fractions:
[tex]\[ \frac{8(5+c)}{(5-c)(5+c)} - \frac{8(5-c)}{(5-c)(5+c)} \][/tex]
Since they have the same denominator, we can combine the numerators:
[tex]\[ \frac{8(5+c) - 8(5-c)}{(5-c)(5+c)} \][/tex]
Step 4: Simplify the numerator
Distribute the 8 in each part of the numerator:
[tex]\[ 8(5+c) = 40 + 8c \][/tex]
[tex]\[ 8(5-c) = 40 - 8c \][/tex]
Substitute these back into the expression:
[tex]\[ \frac{40 + 8c - (40 - 8c)}{(5-c)(5+c)} = \frac{40 + 8c - 40 + 8c}{(5-c)(5+c)} \][/tex]
Combine like terms in the numerator:
[tex]\[ \frac{40 + 8c - 40 + 8c}{(5-c)(5+c)} = \frac{16c}{(5-c)(5+c)} \][/tex]
Step 5: Simplify the denominator
Recognize that \((5-c)(5+c)\) is a difference of squares:
[tex]\[ (5-c)(5+c) = 25 - c^2 \][/tex]
Substitute this back into the expression:
[tex]\[ \frac{16c}{25 - c^2} \][/tex]
Thus, the simplified form of the expression representing the time difference is:
[tex]\[ - \frac{16c}{c^2 - 25} \][/tex]
Therefore, the difference in the time it takes Jesse to travel upstream and downstream is:
[tex]\[ - \frac{16c}{c^2 - 25} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.