Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To form a quadratic polynomial whose zeroes are the reciprocals of the zeroes of the polynomial \( ax^2 + bx + c \), we need to follow a structured approach.
1. Given Polynomial:
The given quadratic polynomial is:
[tex]\[ f(x) = ax^2 + bx + c \][/tex]
2. Zeroes of the Given Polynomial:
Let's denote the zeroes of \( f(x) \) by \(\alpha\) and \(\beta\). Therefore, the polynomial can be written using its roots as:
[tex]\[ f(x) = a(x - \alpha)(x - \beta) \][/tex]
3. Reciprocal Zeroes:
We need to find a new polynomial whose roots are the reciprocals of \(\alpha\) and \(\beta\). Let's denote the reciprocal zeroes as \(\frac{1}{\alpha}\) and \(\frac{1}{\beta}\).
4. Form of the New Polynomial:
The polynomial with roots \(\frac{1}{\alpha}\) and \(\frac{1}{\beta}\) can be written as:
[tex]\[ g(x) = k(x - \frac{1}{\alpha})(x - \frac{1}{\beta}) \][/tex]
where \(k\) is a constant.
5. Expanding the New Polynomial:
Let's expand \(g(x)\):
[tex]\[ g(x) = k\left(x - \frac{1}{\alpha}\right)\left(x - \frac{1}{\beta}\right) \][/tex]
[tex]\[ g(x) = k \left[ x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)x + \frac{1}{\alpha\beta} \right] \][/tex]
6. Relations Using Original Polynomial Coefficients:
From the properties of the roots of the polynomial \(ax^2 + bx + c\), we know:
- Sum of the roots \(\alpha + \beta = -\frac{b}{a}\)
- Product of the roots \(\alpha \beta = \frac{c}{a}\)
7. Substituting Relations:
Using these relations, we get:
[tex]\[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{b}{a}}{\frac{c}{a}} = -\frac{b}{c} \][/tex]
[tex]\[ \frac{1}{\alpha\beta} = \frac{1}{\frac{c}{a}} = \frac{a}{c} \][/tex]
8. Constructing the Polynomial:
Substitute these values into the polynomial:
[tex]\[ g(x) = k \left[ x^2 - \left(-\frac{b}{c}\right)x + \frac{a}{c} \right] \][/tex]
[tex]\[ g(x) = k \left[ x^2 + \frac{b}{c}x + \frac{a}{c} \right] \][/tex]
9. Simplifying the Polynomial:
To match the standard form of a polynomial with integer coefficients, we choose \(k = c\). Therefore:
[tex]\[ g(x) = c \left[ x^2 + \frac{b}{c}x + \frac{a}{c} \right] \][/tex]
[tex]\[ g(x) = cx^2 + bx + a \][/tex]
Thus, the quadratic polynomial whose zeroes are the reciprocals of the zeroes of the polynomial \(ax^2 + bx + c \) is:
[tex]\[ g(x) = cx^2 + bx + a \][/tex]
1. Given Polynomial:
The given quadratic polynomial is:
[tex]\[ f(x) = ax^2 + bx + c \][/tex]
2. Zeroes of the Given Polynomial:
Let's denote the zeroes of \( f(x) \) by \(\alpha\) and \(\beta\). Therefore, the polynomial can be written using its roots as:
[tex]\[ f(x) = a(x - \alpha)(x - \beta) \][/tex]
3. Reciprocal Zeroes:
We need to find a new polynomial whose roots are the reciprocals of \(\alpha\) and \(\beta\). Let's denote the reciprocal zeroes as \(\frac{1}{\alpha}\) and \(\frac{1}{\beta}\).
4. Form of the New Polynomial:
The polynomial with roots \(\frac{1}{\alpha}\) and \(\frac{1}{\beta}\) can be written as:
[tex]\[ g(x) = k(x - \frac{1}{\alpha})(x - \frac{1}{\beta}) \][/tex]
where \(k\) is a constant.
5. Expanding the New Polynomial:
Let's expand \(g(x)\):
[tex]\[ g(x) = k\left(x - \frac{1}{\alpha}\right)\left(x - \frac{1}{\beta}\right) \][/tex]
[tex]\[ g(x) = k \left[ x^2 - \left(\frac{1}{\alpha} + \frac{1}{\beta}\right)x + \frac{1}{\alpha\beta} \right] \][/tex]
6. Relations Using Original Polynomial Coefficients:
From the properties of the roots of the polynomial \(ax^2 + bx + c\), we know:
- Sum of the roots \(\alpha + \beta = -\frac{b}{a}\)
- Product of the roots \(\alpha \beta = \frac{c}{a}\)
7. Substituting Relations:
Using these relations, we get:
[tex]\[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{b}{a}}{\frac{c}{a}} = -\frac{b}{c} \][/tex]
[tex]\[ \frac{1}{\alpha\beta} = \frac{1}{\frac{c}{a}} = \frac{a}{c} \][/tex]
8. Constructing the Polynomial:
Substitute these values into the polynomial:
[tex]\[ g(x) = k \left[ x^2 - \left(-\frac{b}{c}\right)x + \frac{a}{c} \right] \][/tex]
[tex]\[ g(x) = k \left[ x^2 + \frac{b}{c}x + \frac{a}{c} \right] \][/tex]
9. Simplifying the Polynomial:
To match the standard form of a polynomial with integer coefficients, we choose \(k = c\). Therefore:
[tex]\[ g(x) = c \left[ x^2 + \frac{b}{c}x + \frac{a}{c} \right] \][/tex]
[tex]\[ g(x) = cx^2 + bx + a \][/tex]
Thus, the quadratic polynomial whose zeroes are the reciprocals of the zeroes of the polynomial \(ax^2 + bx + c \) is:
[tex]\[ g(x) = cx^2 + bx + a \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.