Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
Since $a^2 \equiv a \pmod{8}$, we can write:
$a^2 - a = 8k$
for some integer $k$.
Factoring the left-hand side, we get:
$a(a - 1) = 8k$
Since $a$ and $a - 1$ are consecutive integers, one of them must be even, and therefore divisible by $2$. Hence, either $a$ or $a - 1$ is divisible by $4$ (since they differ by $1$).
This means that either $a$ or $a - 1$ is equal to $4k'$ for some integer $k'$.
Since $0 \le a \le 7$, the only possibility is $a = 4$.
Therefore, the value of $a$ is $\boxed{4}$.
Step-by-step explanation:
Here's a step-by-step solution:
1. Write the congruence equation: $a^2 \equiv a \pmod{8}$
2. Subtract $a$ from both sides: $a^2 - a \equiv 0 \pmod{8}$
3. Factor the left-hand side: $a(a - 1) \equiv 0 \pmod{8}$
4. Since $a$ and $a - 1$ are consecutive integers, one of them must be even (divisible by $2$).
5. Therefore, either $a$ or $a - 1$ is divisible by $4$ (since they differ by $1$).
6. Let's consider the cases:
a. If $a$ is divisible by $4$, then $a = 4k$ for some integer $k$.
Since $0 \le a \le 7$, the only possibility is $a = 4$.
b. If $a - 1$ is divisible by $4$, then $a - 1 = 4k'$ for some integer $k'$.
Since $0 \le a \le 7$, the only possibility is $a - 1 = 4$, which means $a = 5$. However, this contradicts the condition $a^2 \equiv a \pmod{8}$, since $5^2 = 25 \not\equiv 5 \pmod{8}$.
1. Therefore, the only possibility is $a = \boxed{4}$.
So, the value of $a$ is $4$.
finally done this answer
I hope this will help you
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.