Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure! Let's factor the quadratic equation \(x^2 - 13x + 12\) step-by-step.
### Step 1: Write down the quadratic equation
We start with the quadratic equation:
[tex]\[x^2 - 13x + 12\][/tex]
### Step 2: Identify the coefficients
For any quadratic equation of the form \(ax^2 + bx + c\), the coefficients are:
- \(a = 1\)
- \(b = -13\)
- \(c = 12\)
### Step 3: Find factors of the constant term
We need to find two numbers that multiply to give \(c = 12\) and add up to give \(b = -13\).
The possible pairs of factors of 12 are:
- \(1 \cdot 12\)
- \(2 \cdot 6\)
- \(3 \cdot 4\)
To find the correct pair, we also need to take their signs into account to add up to \(-13\):
1. The pair \((1, 12)\):
[tex]\[ 1 + 12 = 13 \][/tex]
[tex]\[ 1 \cdot 12 = 12 \][/tex]
Thus, the pair does not work since their sum is positive 13, not negative 13.
2. The pair \((2, 6)\):
[tex]\[ 2 + 6 = 8 \][/tex]
[tex]\[ 2 \cdot 6 = 12 \][/tex]
Thus, the pair does not work since their sum is 8.
3. The pair \((3, 4)\):
[tex]\[ 3 + 4 = 7 \][/tex]
[tex]\[ 3 \cdot 4 = 12 \][/tex]
Thus, the pair does not work since their sum is 7.
Considering we seek factors that sum to \(-13\), appropriate negative pairs should be:
- \((-1) \cdot (-12)\)
- \((-2) \cdot (-6)\)
- \((-3) \cdot (-4)\)
4. Only considering \((-1, -12)\):
[tex]\[ -1 + (-12) = -13 \][/tex]
[tex]\[ -1 \cdot (-12) = 12 \][/tex]
This pair works since the sum is \(-13\).
### Step 4: Write the factorized form
Given that the valid pair of numbers is \(-1\) and \(-12\), we can now express the original quadratic equation in its factored form:
[tex]\[ (x - 12)(x - 1) \][/tex]
### Conclusion
Thus, the quadratic equation \(x^2 - 13x + 12\) factors over the integers as:
[tex]\[ (x - 12)(x - 1) \][/tex]
### Step 1: Write down the quadratic equation
We start with the quadratic equation:
[tex]\[x^2 - 13x + 12\][/tex]
### Step 2: Identify the coefficients
For any quadratic equation of the form \(ax^2 + bx + c\), the coefficients are:
- \(a = 1\)
- \(b = -13\)
- \(c = 12\)
### Step 3: Find factors of the constant term
We need to find two numbers that multiply to give \(c = 12\) and add up to give \(b = -13\).
The possible pairs of factors of 12 are:
- \(1 \cdot 12\)
- \(2 \cdot 6\)
- \(3 \cdot 4\)
To find the correct pair, we also need to take their signs into account to add up to \(-13\):
1. The pair \((1, 12)\):
[tex]\[ 1 + 12 = 13 \][/tex]
[tex]\[ 1 \cdot 12 = 12 \][/tex]
Thus, the pair does not work since their sum is positive 13, not negative 13.
2. The pair \((2, 6)\):
[tex]\[ 2 + 6 = 8 \][/tex]
[tex]\[ 2 \cdot 6 = 12 \][/tex]
Thus, the pair does not work since their sum is 8.
3. The pair \((3, 4)\):
[tex]\[ 3 + 4 = 7 \][/tex]
[tex]\[ 3 \cdot 4 = 12 \][/tex]
Thus, the pair does not work since their sum is 7.
Considering we seek factors that sum to \(-13\), appropriate negative pairs should be:
- \((-1) \cdot (-12)\)
- \((-2) \cdot (-6)\)
- \((-3) \cdot (-4)\)
4. Only considering \((-1, -12)\):
[tex]\[ -1 + (-12) = -13 \][/tex]
[tex]\[ -1 \cdot (-12) = 12 \][/tex]
This pair works since the sum is \(-13\).
### Step 4: Write the factorized form
Given that the valid pair of numbers is \(-1\) and \(-12\), we can now express the original quadratic equation in its factored form:
[tex]\[ (x - 12)(x - 1) \][/tex]
### Conclusion
Thus, the quadratic equation \(x^2 - 13x + 12\) factors over the integers as:
[tex]\[ (x - 12)(x - 1) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.