Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Certainly! Let's factor the given polynomial over the integers: \( x^2 - 6x - 16 \).
1. Identify the quadratic polynomial:
[tex]\[ x^2 - 6x - 16 \][/tex]
2. Set up the expression to be factored:
We need to find two binomials of the form:
[tex]\[ (x + a)(x + b) \][/tex]
such that when you expand the product, you get back the original polynomial:
[tex]\[ x^2 - 6x - 16 = x^2 + (a+b)x + ab \][/tex]
3. Determine the values of \( a \) and \( b \):
- We need the coefficients \( a \) and \( b \) to satisfy two conditions:
1. The sum of \( a \) and \( b \) must equal the coefficient of the linear term (which is \(-6\)):
[tex]\[ a + b = -6 \][/tex]
2. The product of \( a \) and \( b \) must equal the constant term (which is \(-16\)):
[tex]\[ ab = -16 \][/tex]
4. Find pairs (a, b) that satisfy these conditions:
Let's find pairs of integers whose product is \(-16\):
[tex]\[ (-1, 16), (1, -16), (-2, 8), (2, -8), (-4, 4), (4, -4) \][/tex]
Now, let's find the pair that also adds up to \(-6\):
- \((-8, 2)\):
[tex]\[ (-8) + 2 = -6 \\ (-8) \cdot 2 = -16 \][/tex]
This pair satisfies both conditions.
5. Write the factored form:
- With \( a = -8 \) and \( b = 2 \):
[tex]\[ x^2 - 6x - 16 = (x - 8)(x + 2) \][/tex]
6. Verification:
- Expanding \( (x - 8)(x + 2) \):
[tex]\[ (x - 8)(x + 2) = x^2 + 2x - 8x - 16 = x^2 - 6x - 16 \][/tex]
The factored form is correct.
Thus, the factored form of \( x^2 - 6x - 16 \) over the integers is:
[tex]\[ (x - 8)(x + 2) \][/tex]
1. Identify the quadratic polynomial:
[tex]\[ x^2 - 6x - 16 \][/tex]
2. Set up the expression to be factored:
We need to find two binomials of the form:
[tex]\[ (x + a)(x + b) \][/tex]
such that when you expand the product, you get back the original polynomial:
[tex]\[ x^2 - 6x - 16 = x^2 + (a+b)x + ab \][/tex]
3. Determine the values of \( a \) and \( b \):
- We need the coefficients \( a \) and \( b \) to satisfy two conditions:
1. The sum of \( a \) and \( b \) must equal the coefficient of the linear term (which is \(-6\)):
[tex]\[ a + b = -6 \][/tex]
2. The product of \( a \) and \( b \) must equal the constant term (which is \(-16\)):
[tex]\[ ab = -16 \][/tex]
4. Find pairs (a, b) that satisfy these conditions:
Let's find pairs of integers whose product is \(-16\):
[tex]\[ (-1, 16), (1, -16), (-2, 8), (2, -8), (-4, 4), (4, -4) \][/tex]
Now, let's find the pair that also adds up to \(-6\):
- \((-8, 2)\):
[tex]\[ (-8) + 2 = -6 \\ (-8) \cdot 2 = -16 \][/tex]
This pair satisfies both conditions.
5. Write the factored form:
- With \( a = -8 \) and \( b = 2 \):
[tex]\[ x^2 - 6x - 16 = (x - 8)(x + 2) \][/tex]
6. Verification:
- Expanding \( (x - 8)(x + 2) \):
[tex]\[ (x - 8)(x + 2) = x^2 + 2x - 8x - 16 = x^2 - 6x - 16 \][/tex]
The factored form is correct.
Thus, the factored form of \( x^2 - 6x - 16 \) over the integers is:
[tex]\[ (x - 8)(x + 2) \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.