Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's factor the given polynomial over the integers: \( x^2 - 6x - 16 \).
1. Identify the quadratic polynomial:
[tex]\[ x^2 - 6x - 16 \][/tex]
2. Set up the expression to be factored:
We need to find two binomials of the form:
[tex]\[ (x + a)(x + b) \][/tex]
such that when you expand the product, you get back the original polynomial:
[tex]\[ x^2 - 6x - 16 = x^2 + (a+b)x + ab \][/tex]
3. Determine the values of \( a \) and \( b \):
- We need the coefficients \( a \) and \( b \) to satisfy two conditions:
1. The sum of \( a \) and \( b \) must equal the coefficient of the linear term (which is \(-6\)):
[tex]\[ a + b = -6 \][/tex]
2. The product of \( a \) and \( b \) must equal the constant term (which is \(-16\)):
[tex]\[ ab = -16 \][/tex]
4. Find pairs (a, b) that satisfy these conditions:
Let's find pairs of integers whose product is \(-16\):
[tex]\[ (-1, 16), (1, -16), (-2, 8), (2, -8), (-4, 4), (4, -4) \][/tex]
Now, let's find the pair that also adds up to \(-6\):
- \((-8, 2)\):
[tex]\[ (-8) + 2 = -6 \\ (-8) \cdot 2 = -16 \][/tex]
This pair satisfies both conditions.
5. Write the factored form:
- With \( a = -8 \) and \( b = 2 \):
[tex]\[ x^2 - 6x - 16 = (x - 8)(x + 2) \][/tex]
6. Verification:
- Expanding \( (x - 8)(x + 2) \):
[tex]\[ (x - 8)(x + 2) = x^2 + 2x - 8x - 16 = x^2 - 6x - 16 \][/tex]
The factored form is correct.
Thus, the factored form of \( x^2 - 6x - 16 \) over the integers is:
[tex]\[ (x - 8)(x + 2) \][/tex]
1. Identify the quadratic polynomial:
[tex]\[ x^2 - 6x - 16 \][/tex]
2. Set up the expression to be factored:
We need to find two binomials of the form:
[tex]\[ (x + a)(x + b) \][/tex]
such that when you expand the product, you get back the original polynomial:
[tex]\[ x^2 - 6x - 16 = x^2 + (a+b)x + ab \][/tex]
3. Determine the values of \( a \) and \( b \):
- We need the coefficients \( a \) and \( b \) to satisfy two conditions:
1. The sum of \( a \) and \( b \) must equal the coefficient of the linear term (which is \(-6\)):
[tex]\[ a + b = -6 \][/tex]
2. The product of \( a \) and \( b \) must equal the constant term (which is \(-16\)):
[tex]\[ ab = -16 \][/tex]
4. Find pairs (a, b) that satisfy these conditions:
Let's find pairs of integers whose product is \(-16\):
[tex]\[ (-1, 16), (1, -16), (-2, 8), (2, -8), (-4, 4), (4, -4) \][/tex]
Now, let's find the pair that also adds up to \(-6\):
- \((-8, 2)\):
[tex]\[ (-8) + 2 = -6 \\ (-8) \cdot 2 = -16 \][/tex]
This pair satisfies both conditions.
5. Write the factored form:
- With \( a = -8 \) and \( b = 2 \):
[tex]\[ x^2 - 6x - 16 = (x - 8)(x + 2) \][/tex]
6. Verification:
- Expanding \( (x - 8)(x + 2) \):
[tex]\[ (x - 8)(x + 2) = x^2 + 2x - 8x - 16 = x^2 - 6x - 16 \][/tex]
The factored form is correct.
Thus, the factored form of \( x^2 - 6x - 16 \) over the integers is:
[tex]\[ (x - 8)(x + 2) \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.