At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve the inequality \( 3 - \frac{x}{2} \leq 18 \), we'll follow these steps:
1. Isolate the term involving \( x \):
[tex]\[ 3 - \frac{x}{2} \leq 18 \][/tex]
Subtract 3 from both sides to isolate the term containing \( x \):
[tex]\[ 3 - \frac{x}{2} - 3 \leq 18 - 3 \][/tex]
Simplifying this gives:
[tex]\[ -\frac{x}{2} \leq 15 \][/tex]
2. Eliminate the fraction:
Multiply both sides of the inequality by \(-2\) to solve for \( x \). It's important to remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality sign:
[tex]\[ -2 \left( -\frac{x}{2} \right) \geq -2 \times 15 \][/tex]
Simplifying this results in:
[tex]\[ x \geq -30 \][/tex]
So the solution to the inequality \( 3 - \frac{x}{2} \leq 18 \) is \( x \geq -30 \).
Finally, let's match our solution with the answer choices provided:
- A. \( x \leq 42 \)
- B. \( x \leq -30 \)
- C. \( x \geq -30 \)
- D. \( x \geq -42 \)
The correct answer is C. [tex]\( x \geq -30 \)[/tex].
1. Isolate the term involving \( x \):
[tex]\[ 3 - \frac{x}{2} \leq 18 \][/tex]
Subtract 3 from both sides to isolate the term containing \( x \):
[tex]\[ 3 - \frac{x}{2} - 3 \leq 18 - 3 \][/tex]
Simplifying this gives:
[tex]\[ -\frac{x}{2} \leq 15 \][/tex]
2. Eliminate the fraction:
Multiply both sides of the inequality by \(-2\) to solve for \( x \). It's important to remember that when you multiply or divide both sides of an inequality by a negative number, you must reverse the inequality sign:
[tex]\[ -2 \left( -\frac{x}{2} \right) \geq -2 \times 15 \][/tex]
Simplifying this results in:
[tex]\[ x \geq -30 \][/tex]
So the solution to the inequality \( 3 - \frac{x}{2} \leq 18 \) is \( x \geq -30 \).
Finally, let's match our solution with the answer choices provided:
- A. \( x \leq 42 \)
- B. \( x \leq -30 \)
- C. \( x \geq -30 \)
- D. \( x \geq -42 \)
The correct answer is C. [tex]\( x \geq -30 \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.