Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which of the given statements is true, let’s solve this step-by-step using the properties of the Fibonacci sequence. We're given:
[tex]\[ F(6) = 8 \][/tex]
[tex]\[ F(7) = 13 \][/tex]
Recall the Fibonacci relation:
[tex]\[ F(n) = F(n-1) + F(n-2) \][/tex]
Firstly, we need to find \( F(8) \):
[tex]\[ F(8) = F(7) + F(6) \][/tex]
Substituting the known values:
[tex]\[ F(8) = 13 + 8 = 21 \][/tex]
So, one of the given options is:
B. \( F(8) = 21 \)
Next, let’s determine if the options involving \( F(13) \) and \( F(5) \) are true. We're asked about:
D. \( F(5) = 3 \)
To find \( F(5) \), we can work backwards using the Fibonacci relation from the known values of \( F(6) \) and \( F(7) \):
[tex]\[ F(6) = F(5) + F(4) \][/tex]
[tex]\[ F(7) = F(6) + F(5) \][/tex]
We already know \( F(6) = 8 \) and \( F(7) = 13 \). Let's start finding \( F(5) \):
From \( F(7) = 13 \):
[tex]\[ 13 = 8 + F(5) \][/tex]
[tex]\[ F(5) = 13 - 8 = 5 \][/tex]
Now that we know \( F(5) \):
From \( F(6) = 8 \):
[tex]\[ 8 = F(5) + F(4) \][/tex]
[tex]\[ 8 = 5 + F(4) \][/tex]
[tex]\[ F(4) = 8 - 5 = 3 \][/tex]
Given \( F(5) = 5 \), which contradicts the hypothesis that \( F(5) = 3 \), we deduce:
C. \( F(5) \neq 3 \)
Summarizing what we have verified:
- Statement A is incorrect as \( F(8) \) is not 19.
- Statement B is correct as \( F(8) = 21 \).
- Statement C (\( F(13) = 21 \)) is not tackled directly, but we have no context for verifying it directly without more extensive calculations.
- Statement D is correct from the initial assumption \( F(5) = 3 \).
Thus, the true statement is:
[tex]\[ B. \, F(8) = 21 \][/tex] and verifying from assumption provided
D. \, F(5) = 3.
[tex]\[ F(6) = 8 \][/tex]
[tex]\[ F(7) = 13 \][/tex]
Recall the Fibonacci relation:
[tex]\[ F(n) = F(n-1) + F(n-2) \][/tex]
Firstly, we need to find \( F(8) \):
[tex]\[ F(8) = F(7) + F(6) \][/tex]
Substituting the known values:
[tex]\[ F(8) = 13 + 8 = 21 \][/tex]
So, one of the given options is:
B. \( F(8) = 21 \)
Next, let’s determine if the options involving \( F(13) \) and \( F(5) \) are true. We're asked about:
D. \( F(5) = 3 \)
To find \( F(5) \), we can work backwards using the Fibonacci relation from the known values of \( F(6) \) and \( F(7) \):
[tex]\[ F(6) = F(5) + F(4) \][/tex]
[tex]\[ F(7) = F(6) + F(5) \][/tex]
We already know \( F(6) = 8 \) and \( F(7) = 13 \). Let's start finding \( F(5) \):
From \( F(7) = 13 \):
[tex]\[ 13 = 8 + F(5) \][/tex]
[tex]\[ F(5) = 13 - 8 = 5 \][/tex]
Now that we know \( F(5) \):
From \( F(6) = 8 \):
[tex]\[ 8 = F(5) + F(4) \][/tex]
[tex]\[ 8 = 5 + F(4) \][/tex]
[tex]\[ F(4) = 8 - 5 = 3 \][/tex]
Given \( F(5) = 5 \), which contradicts the hypothesis that \( F(5) = 3 \), we deduce:
C. \( F(5) \neq 3 \)
Summarizing what we have verified:
- Statement A is incorrect as \( F(8) \) is not 19.
- Statement B is correct as \( F(8) = 21 \).
- Statement C (\( F(13) = 21 \)) is not tackled directly, but we have no context for verifying it directly without more extensive calculations.
- Statement D is correct from the initial assumption \( F(5) = 3 \).
Thus, the true statement is:
[tex]\[ B. \, F(8) = 21 \][/tex] and verifying from assumption provided
D. \, F(5) = 3.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.