Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Ask your questions and receive precise answers from experienced professionals across different disciplines. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Let's solve this step-by-step:
1. Identify the Given Data:
- Mass of ethanol, \( m = 50.0 \) grams.
- Initial temperature, \( T_{\text{initial}} = 99^\circ \, \text{C} \).
- Final temperature, \( T_{\text{final}} = 79^\circ \, \text{C} \).
- Specific heat capacity of liquid ethanol, \( c_{\text{liquid}} = 1.0 \) J/g°C.
2. Determine the Temperature Change:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 99^\circ \, \text{C} - 79^\circ \, \text{C} = 20^\circ \, \text{C} \][/tex]
3. Apply the Formula for Heat Released:
The formula to calculate heat \( Q \) released or absorbed is:
[tex]\[ Q = mc\Delta T \][/tex]
Where:
- \( m \) = mass
- \( c \) = specific heat capacity
- \( \Delta T \) = temperature change
4. Substitute the Values into the Formula:
[tex]\[ Q = 50.0 \, \text{g} \times 1.0 \, \frac{\text{J}}{\text{g}^\circ \text{C}} \times 20^\circ \, \text{C} \][/tex]
[tex]\[ Q = 50.0 \times 20 = 1000 \, \text{J} \][/tex]
Therefore, the heat released when 50.0 g of ethanol cools from \( 99^\circ \, \text{C} \) to \( 79^\circ \, \text{C} \) is \( 1000 \) J.
The correct answer is [tex]\( 1000 \)[/tex] J.
1. Identify the Given Data:
- Mass of ethanol, \( m = 50.0 \) grams.
- Initial temperature, \( T_{\text{initial}} = 99^\circ \, \text{C} \).
- Final temperature, \( T_{\text{final}} = 79^\circ \, \text{C} \).
- Specific heat capacity of liquid ethanol, \( c_{\text{liquid}} = 1.0 \) J/g°C.
2. Determine the Temperature Change:
[tex]\[ \Delta T = T_{\text{initial}} - T_{\text{final}} \][/tex]
[tex]\[ \Delta T = 99^\circ \, \text{C} - 79^\circ \, \text{C} = 20^\circ \, \text{C} \][/tex]
3. Apply the Formula for Heat Released:
The formula to calculate heat \( Q \) released or absorbed is:
[tex]\[ Q = mc\Delta T \][/tex]
Where:
- \( m \) = mass
- \( c \) = specific heat capacity
- \( \Delta T \) = temperature change
4. Substitute the Values into the Formula:
[tex]\[ Q = 50.0 \, \text{g} \times 1.0 \, \frac{\text{J}}{\text{g}^\circ \text{C}} \times 20^\circ \, \text{C} \][/tex]
[tex]\[ Q = 50.0 \times 20 = 1000 \, \text{J} \][/tex]
Therefore, the heat released when 50.0 g of ethanol cools from \( 99^\circ \, \text{C} \) to \( 79^\circ \, \text{C} \) is \( 1000 \) J.
The correct answer is [tex]\( 1000 \)[/tex] J.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.