Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's fill in the missing pieces in your proof step-by-step.
Given: \(7(x-1)=2(3x+2)\)
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statement} & \text{Reason} \\ \hline 7(x-1)=2(3x+2) & \text{Given} \\ \hline 7(x - 1) = 2(3x + 2) & \text{Given} \\ \hline 7x - 7 = 6x + 4 & \text{Distributive Property (Expansion)} \\ \hline 7x - 7 = 6x + 4 & \text{4. Expand both sides} \\ \hline 7x - 6x - 7 = 6x - 6x + 4 & \text{Subtract } 6x \text{ from both sides} \\ \hline x - 7 = 4 & \text{Combine like terms} \\ \hline x - 7 + 7 = 4 + 7 & \text{Add 7 to both sides} \\ \hline x = 11 & \text{Solve for } x \\ \hline 11 = x & \text{Reflexive Property} \\ \hline \end{tabular} \][/tex]
Thus, the completed proof table is as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statement} & \text{Reason} \\ \hline 7(x-1)=2(3x+2) & \text{Given} \\ \hline 7x - 7 = 6x + 4 & \text{Expand both sides} \\ \hline x - 7 = 4 & \text{Subtract 6x from both sides} \\ \hline x = 11 & \text{Add 7 to both sides} \\ \hline 11 = x & \text{Reflexive Property} \\ \hline \end{tabular} \][/tex]
By following these steps and completing the proof table, we demonstrate that [tex]\(x = 11\)[/tex].
Given: \(7(x-1)=2(3x+2)\)
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statement} & \text{Reason} \\ \hline 7(x-1)=2(3x+2) & \text{Given} \\ \hline 7(x - 1) = 2(3x + 2) & \text{Given} \\ \hline 7x - 7 = 6x + 4 & \text{Distributive Property (Expansion)} \\ \hline 7x - 7 = 6x + 4 & \text{4. Expand both sides} \\ \hline 7x - 6x - 7 = 6x - 6x + 4 & \text{Subtract } 6x \text{ from both sides} \\ \hline x - 7 = 4 & \text{Combine like terms} \\ \hline x - 7 + 7 = 4 + 7 & \text{Add 7 to both sides} \\ \hline x = 11 & \text{Solve for } x \\ \hline 11 = x & \text{Reflexive Property} \\ \hline \end{tabular} \][/tex]
Thus, the completed proof table is as follows:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{Statement} & \text{Reason} \\ \hline 7(x-1)=2(3x+2) & \text{Given} \\ \hline 7x - 7 = 6x + 4 & \text{Expand both sides} \\ \hline x - 7 = 4 & \text{Subtract 6x from both sides} \\ \hline x = 11 & \text{Add 7 to both sides} \\ \hline 11 = x & \text{Reflexive Property} \\ \hline \end{tabular} \][/tex]
By following these steps and completing the proof table, we demonstrate that [tex]\(x = 11\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.