Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine how many different three-digit codes can be created using the digits 0, 1, 4, 8, and 9 without repetition, we need to calculate the number of permutations of 3 digits chosen from a set of 5 digits.
Here's the step-by-step solution:
1. Identify the total number of digits available:
- The given digits are 0, 1, 4, 8, and 9.
- Therefore, we have 5 digits in total.
2. Select the number of digits to form a code:
- We are forming a three-digit code.
- So, we need to pick 3 digits out of the 5 available digits.
3. Calculate the number of permutations of 3 digits out of 5:
- The formula to calculate permutations (when order matters) is given by the permutation formula \( nPr \), where \( n \) is the total number of items, and \( r \) is the number of items to pick.
- \( nPr = \frac{n!}{(n-r)!} \)
- In this scenario, \( n = 5 \) and \( r = 3 \).
- Therefore, we compute \( 5P3 \) using the formula:
[tex]\[ 5P3 = \frac{5!}{(5-3)!} = \frac{5!}{2!} \][/tex]
- Calculate the factorials:
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \][/tex]
[tex]\[ 2! = 2 \times 1 = 2 \][/tex]
- Divide the factorials:
[tex]\[ 5P3 = \frac{120}{2} = 60 \][/tex]
4. Conclude with the correct number of permutations:
- The number of different three-digit codes that can be created from the digits 0, 1, 4, 8, and 9 without repetition is 60.
Thus, the answer is C. 60.
Here's the step-by-step solution:
1. Identify the total number of digits available:
- The given digits are 0, 1, 4, 8, and 9.
- Therefore, we have 5 digits in total.
2. Select the number of digits to form a code:
- We are forming a three-digit code.
- So, we need to pick 3 digits out of the 5 available digits.
3. Calculate the number of permutations of 3 digits out of 5:
- The formula to calculate permutations (when order matters) is given by the permutation formula \( nPr \), where \( n \) is the total number of items, and \( r \) is the number of items to pick.
- \( nPr = \frac{n!}{(n-r)!} \)
- In this scenario, \( n = 5 \) and \( r = 3 \).
- Therefore, we compute \( 5P3 \) using the formula:
[tex]\[ 5P3 = \frac{5!}{(5-3)!} = \frac{5!}{2!} \][/tex]
- Calculate the factorials:
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \][/tex]
[tex]\[ 2! = 2 \times 1 = 2 \][/tex]
- Divide the factorials:
[tex]\[ 5P3 = \frac{120}{2} = 60 \][/tex]
4. Conclude with the correct number of permutations:
- The number of different three-digit codes that can be created from the digits 0, 1, 4, 8, and 9 without repetition is 60.
Thus, the answer is C. 60.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.