Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine how many different three-digit codes can be created from the digits 0, 1, 4, 8, and 9, given that no digit may be repeated in any code, we can follow these steps:
1. Identify the Total Number of Digits Available:
The given digits are 0, 1, 4, 8, and 9. Hence, there are 5 different digits in total.
2. Permutations of 3 Digits:
Since we need to create three-digit codes and each digit cannot be repeated, we use permutations.
The formula to calculate the number of permutations of \( n \) items taken \( r \) at a time is:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items,
- \( r \) is the number of items to choose, and
- \( ! \) denotes factorial.
3. Substitute the Values:
Here, \( n = 5 \) (since we have 5 digits) and \( r = 3 \) (since we need a three-digit code). So we calculate:
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
Calculate the factorials:
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \][/tex]
[tex]\[ 2! = 2 \times 1 = 2 \][/tex]
Then, the number of permutations is:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit codes that can be created from the digits 0, 1, 4, 8, and 9, without repeating any digit, is 60.
Thus, the correct answer is C. 60.
1. Identify the Total Number of Digits Available:
The given digits are 0, 1, 4, 8, and 9. Hence, there are 5 different digits in total.
2. Permutations of 3 Digits:
Since we need to create three-digit codes and each digit cannot be repeated, we use permutations.
The formula to calculate the number of permutations of \( n \) items taken \( r \) at a time is:
[tex]\[ P(n, r) = \frac{n!}{(n - r)!} \][/tex]
Where:
- \( n \) is the total number of items,
- \( r \) is the number of items to choose, and
- \( ! \) denotes factorial.
3. Substitute the Values:
Here, \( n = 5 \) (since we have 5 digits) and \( r = 3 \) (since we need a three-digit code). So we calculate:
[tex]\[ P(5, 3) = \frac{5!}{(5 - 3)!} = \frac{5!}{2!} \][/tex]
Calculate the factorials:
[tex]\[ 5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \][/tex]
[tex]\[ 2! = 2 \times 1 = 2 \][/tex]
Then, the number of permutations is:
[tex]\[ P(5, 3) = \frac{120}{2} = 60 \][/tex]
Therefore, the number of different three-digit codes that can be created from the digits 0, 1, 4, 8, and 9, without repeating any digit, is 60.
Thus, the correct answer is C. 60.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.