Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Alright, let's solve the equation step-by-step:
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.