Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Alright, let's solve the equation step-by-step:
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.