Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Alright, let's solve the equation step-by-step:
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
The given equation is:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
First, we can rewrite the division ":" symbol as a fraction:
[tex]\[ \frac{640}{\frac{2y}{5}} \cdot y = 640 \][/tex]
Next, let's simplify the fraction inside the equation:
[tex]\[ \frac{640 \cdot 5}{2y} \cdot y = 640 \][/tex]
Here, \(640 \cdot 5\) is \(3200\), so the equation becomes:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \][/tex]
We can now simplify the fraction:
[tex]\[ \frac{3200}{2y} \cdot y = 640 \rightarrow \left( \frac{3200}{2y}\right) \cdot y = 640 \][/tex]
Notice that \( \frac{3200}{2y} \cdot y \) simplifies to \( \frac{3200}{2} \), because \(\frac{3200}{2y}\) multiplied by \( y \) just cancels out the \( y \):
[tex]\[ \frac{3200}{2} = 640 \][/tex]
So, our equation simplifies to:
[tex]\[ \frac{3200}{2} = 640 \][/tex]
Which simplifies further to:
[tex]\[ 1600 = 640 \][/tex]
Thus, we recognize that for the equation to be true, the value of \( y \) must meet this condition.
Going back to our earlier simplified equation:
[tex]\[ 640 : \left(\frac{2y}{5}\right) \cdot y = 640 \][/tex]
By following our steps, we found that:
[tex]\[ y = 5 \][/tex]
Hence, the solution is:
[tex]\[ y = 5.0 \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.