Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To find the \( n \)th term of the quadratic sequence \( 3, 8, 15, 24, 35, \ldots \), we assume the general form of a quadratic sequence, which is given by:
[tex]\[ T_n = an^2 + bn + c \][/tex]
Using the terms of the given sequence, we can set up a system of equations based on the first few terms.
1. For \( T_1 = 3 \), we have:
[tex]\[ a(1)^2 + b(1) + c = 3 \][/tex]
[tex]\[ a + b + c = 3 \quad \text{(Equation 1)} \][/tex]
2. For \( T_2 = 8 \), we have:
[tex]\[ a(2)^2 + b(2) + c = 8 \][/tex]
[tex]\[ 4a + 2b + c = 8 \quad \text{(Equation 2)} \][/tex]
3. For \( T_3 = 15 \), we have:
[tex]\[ a(3)^2 + b(3) + c = 15 \][/tex]
[tex]\[ 9a + 3b + c = 15 \quad \text{(Equation 3)} \][/tex]
We now have a system of three equations:
1. \( a + b + c = 3 \)
2. \( 4a + 2b + c = 8 \)
3. \( 9a + 3b + c = 15 \)
By solving this system of equations, we find the values of \( a \), \( b \), and \( c \). The calculations yield the following results:
[tex]\[ a \approx 1 \][/tex]
[tex]\[ b \approx 2 \][/tex]
[tex]\[ c \approx 0 \][/tex]
Therefore, the formula for the \( n \)th term of the sequence is:
[tex]\[ T_n = n^2 + 2n + 0 \][/tex]
or simply:
[tex]\[ T_n = n^2 + 2n \][/tex]
Let's verify by calculating the first few terms using this formula:
For \( n = 1 \):
[tex]\[ T_1 = 1^2 + 2 \cdot 1 = 1 + 2 = 3 \][/tex]
For \( n = 2 \):
[tex]\[ T_2 = 2^2 + 2 \cdot 2 = 4 + 4 = 8 \][/tex]
For \( n = 3 \):
[tex]\[ T_3 = 3^2 + 2 \cdot 3 = 9 + 6 = 15 \][/tex]
For \( n = 4 \):
[tex]\[ T_4 = 4^2 + 2 \cdot 4 = 16 + 8 = 24 \][/tex]
For \( n = 5 \):
[tex]\[ T_5 = 5^2 + 2 \cdot 5 = 25 + 10 = 35 \][/tex]
Hence, the \( n \)th term of the given quadratic sequence is:
[tex]\[ T_n = n^2 + 2n \][/tex]
[tex]\[ T_n = an^2 + bn + c \][/tex]
Using the terms of the given sequence, we can set up a system of equations based on the first few terms.
1. For \( T_1 = 3 \), we have:
[tex]\[ a(1)^2 + b(1) + c = 3 \][/tex]
[tex]\[ a + b + c = 3 \quad \text{(Equation 1)} \][/tex]
2. For \( T_2 = 8 \), we have:
[tex]\[ a(2)^2 + b(2) + c = 8 \][/tex]
[tex]\[ 4a + 2b + c = 8 \quad \text{(Equation 2)} \][/tex]
3. For \( T_3 = 15 \), we have:
[tex]\[ a(3)^2 + b(3) + c = 15 \][/tex]
[tex]\[ 9a + 3b + c = 15 \quad \text{(Equation 3)} \][/tex]
We now have a system of three equations:
1. \( a + b + c = 3 \)
2. \( 4a + 2b + c = 8 \)
3. \( 9a + 3b + c = 15 \)
By solving this system of equations, we find the values of \( a \), \( b \), and \( c \). The calculations yield the following results:
[tex]\[ a \approx 1 \][/tex]
[tex]\[ b \approx 2 \][/tex]
[tex]\[ c \approx 0 \][/tex]
Therefore, the formula for the \( n \)th term of the sequence is:
[tex]\[ T_n = n^2 + 2n + 0 \][/tex]
or simply:
[tex]\[ T_n = n^2 + 2n \][/tex]
Let's verify by calculating the first few terms using this formula:
For \( n = 1 \):
[tex]\[ T_1 = 1^2 + 2 \cdot 1 = 1 + 2 = 3 \][/tex]
For \( n = 2 \):
[tex]\[ T_2 = 2^2 + 2 \cdot 2 = 4 + 4 = 8 \][/tex]
For \( n = 3 \):
[tex]\[ T_3 = 3^2 + 2 \cdot 3 = 9 + 6 = 15 \][/tex]
For \( n = 4 \):
[tex]\[ T_4 = 4^2 + 2 \cdot 4 = 16 + 8 = 24 \][/tex]
For \( n = 5 \):
[tex]\[ T_5 = 5^2 + 2 \cdot 5 = 25 + 10 = 35 \][/tex]
Hence, the \( n \)th term of the given quadratic sequence is:
[tex]\[ T_n = n^2 + 2n \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.