Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

[tex]\[ V = \pi r^2 h \][/tex]

The formula gives the volume \( V \) of a right circular cylinder with radius \( r \) and height \( h \). If the volume of a right circular cylinder with a radius of 4 feet and a height of 30 feet is \( a \pi \) cubic feet, what is the value of \( a \)?

[tex]\(\square\)[/tex]


Sagot :

To determine the value of \( a \) in the given context, let's go through the step-by-step solution for finding the volume of a right circular cylinder and then relate it to the form \( a \pi \).

1. Identify the formula for the volume of a right circular cylinder:
[tex]\[ V = \pi r^2 h \][/tex]

2. Substitute the given values:
- Radius (\( r \)) = 4 feet
- Height (\( h \)) = 30 feet

3. Substitute these values into the formula:
[tex]\[ V = \pi (4)^2 (30) \][/tex]

4. Simplify inside the parentheses first:
[tex]\[ V = \pi (16) (30) \][/tex]

5. Multiply the numbers:
[tex]\[ V = \pi \times 480 \][/tex]

6. Express the volume in terms of \( a \pi \):
[tex]\[ V = a \pi \][/tex]
By comparing, we can see that \( a = 480 \).

Thus, the value of \( a \) is [tex]\[ \boxed{480} \][/tex]