Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's go through the problem step-by-step.
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.