Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

A polynomial \(P\) is given.

[tex]\[ P(x) = x^6 - 1 \][/tex]

(a) Find all zeros of \(P\), real and complex. (Enter your answers as a comma-separated list with appropriate multiplicities.)

[tex]\[ x = \][/tex]

(b) Factor \(P\) completely.

[tex]\[ P(x) = \][/tex]


Sagot :

Sure, let's go through the problem step-by-step.

### (a) Finding all zeros of \( P(x) = x^6 - 1 \)

To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]

This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]

The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).

Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]

Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]

### (b) Factoring \( P(x) \)

The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]

However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]

So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]

### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]

(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]