Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's go through the problem step-by-step.
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.