Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Sure, let's go through the problem step-by-step.
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### (a) Finding all zeros of \( P(x) = x^6 - 1 \)
To find the zeros of \( P(x) = x^6 - 1 \), we need to solve the equation:
[tex]\[ x^6 - 1 = 0 \][/tex]
This can be rewritten as:
[tex]\[ x^6 = 1 \][/tex]
The solutions to this equation are the sixth roots of unity. These roots are given by:
[tex]\[ x = e^{2\pi ik/6} \][/tex]
for \( k = 0, 1, 2, 3, 4, 5 \).
Expressing these roots in terms of real and imaginary components, we get:
- For \( k = 0 \):
[tex]\[ x = e^{0} = 1 \][/tex]
- For \( k = 1 \):
[tex]\[ x = e^{i\pi/3} = \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 2 \):
[tex]\[ x = e^{2i\pi/3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 3 \):
[tex]\[ x = e^{i\pi} = -1 \][/tex]
- For \( k = 4 \):
[tex]\[ x = e^{4i\pi/3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
- For \( k = 5 \):
[tex]\[ x = e^{5i\pi/3} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \][/tex]
Therefore, the zeros (roots) of \( P(x) \) are:
[tex]\[ \{-1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i\} \][/tex]
### (b) Factoring \( P(x) \)
The polynomial \( P(x) = x^6 - 1 \) can be factored into linear factors corresponding to the roots, as follows:
[tex]\[ x^6 - 1 = (x - 1)(x + 1)\left(x - \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)\right)\left(x - \left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)\right) \][/tex]
However, this factorization can be simplified by recognizing that the polynomial \( P(x) = x^6 - 1 \) can also be factored using its quadratic factors:
[tex]\[ P(x) = (x^2 - 1)\left((x + \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right)\left((x - \frac{1}{2})^2 + \left(\frac{\sqrt{3}}{2}\right)^2\right) \][/tex]
Simplifying, we have:
[tex]\[ P(x) = (x^2 - 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
So, the complete factorization of \( P(x) \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
### Final Answer:
(a) The zeros of \( P(x) = x^6 - 1 \) are:
[tex]\[ x = -1, 1, -\frac{1}{2} - \frac{\sqrt{3}}{2}i, -\frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i, \frac{1}{2} + \frac{\sqrt{3}}{2}i \][/tex]
(b) The complete factorization of \( P(x) = x^6 - 1 \) is:
[tex]\[ P(x) = (x - 1)(x + 1)(x^2 + x + 1)(x^2 - x + 1) \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.