Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the volume of a regular triangular pyramid with the given dimensions, follow these steps:
### 1. Calculate the Area of the Triangular Base
To find the area of the triangular base, use the formula for the area of a triangle:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Here, the base \( b \) of the triangular base is 10 cm and the altitude \( h_b \) of this triangle is approximately 8.7 cm. Substituting these values into the formula gives:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 10 \, \text{cm} \times 8.7 \, \text{cm} \][/tex]
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 87 \, \text{cm}^2 \][/tex]
[tex]\[ A_{\text{base}} = 43.5 \, \text{cm}^2 \][/tex]
So, the area of the triangular base \( A_{\text{base}} \) is \( 43.5 \, \text{cm}^2 \).
### 2. Calculate the Volume of the Pyramid
The formula for the volume \( V \) of a pyramid is:
[tex]\[ V = \frac{1}{3} \times A_{\text{base}} \times h \][/tex]
Here, \( A_{\text{base}} \) is the area of the triangular base which we have already calculated as \( 43.5 \, \text{cm}^2 \), and \( h \) is the height of the pyramid, which is 12 cm. Substituting these values into the formula gives:
[tex]\[ V = \frac{1}{3} \times 43.5 \, \text{cm}^2 \times 12 \, \text{cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 522 \, \text{cm}^3 \][/tex]
[tex]\[ V = 174 \, \text{cm}^3 \][/tex]
Therefore, the volume of the regular triangular pyramid is [tex]\( 174 \, \text{cm}^3 \)[/tex].
### 1. Calculate the Area of the Triangular Base
To find the area of the triangular base, use the formula for the area of a triangle:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Here, the base \( b \) of the triangular base is 10 cm and the altitude \( h_b \) of this triangle is approximately 8.7 cm. Substituting these values into the formula gives:
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 10 \, \text{cm} \times 8.7 \, \text{cm} \][/tex]
[tex]\[ A_{\text{base}} = \frac{1}{2} \times 87 \, \text{cm}^2 \][/tex]
[tex]\[ A_{\text{base}} = 43.5 \, \text{cm}^2 \][/tex]
So, the area of the triangular base \( A_{\text{base}} \) is \( 43.5 \, \text{cm}^2 \).
### 2. Calculate the Volume of the Pyramid
The formula for the volume \( V \) of a pyramid is:
[tex]\[ V = \frac{1}{3} \times A_{\text{base}} \times h \][/tex]
Here, \( A_{\text{base}} \) is the area of the triangular base which we have already calculated as \( 43.5 \, \text{cm}^2 \), and \( h \) is the height of the pyramid, which is 12 cm. Substituting these values into the formula gives:
[tex]\[ V = \frac{1}{3} \times 43.5 \, \text{cm}^2 \times 12 \, \text{cm} \][/tex]
[tex]\[ V = \frac{1}{3} \times 522 \, \text{cm}^3 \][/tex]
[tex]\[ V = 174 \, \text{cm}^3 \][/tex]
Therefore, the volume of the regular triangular pyramid is [tex]\( 174 \, \text{cm}^3 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.