Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to use the appropriate trigonometric ratio based on the given angle and the length of the board.
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.