Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve this problem, we need to use the appropriate trigonometric ratio based on the given angle and the length of the board.
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
Given:
- The length of the board \( AB \) is 10 feet.
- The angle \( \theta \) between the board and the ground is \( 60^\circ \).
We need to find the horizontal distance \( x \) from the base of the board to the wall (point \( A \) to the wall at point \( C \)). This scenario forms a right triangle \( ABC \) where:
- \( AC \) (the distance we need to find) is the adjacent side of the angle \( 60^\circ \).
- \( AB \) (the length of the board) is the hypotenuse.
The cosine function relates the adjacent side to the hypotenuse in a right triangle. Specifically,
[tex]\[ \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \][/tex]
Using the given values:
[tex]\[ \cos(60^\circ) = \frac{x}{10} \][/tex]
We know that \( \cos(60^\circ) \) is \( \frac{1}{2} \). Hence,
[tex]\[ \frac{1}{2} = \frac{x}{10} \][/tex]
To solve for \( x \), we multiply both sides by 10:
[tex]\[ x = 10 \times \frac{1}{2} \][/tex]
[tex]\[ x = 5 \][/tex]
Therefore, the base of the board (point \( A \)) is 5 feet away from the wall (point \( C \)).
The correct trig ratio and distance from the wall, according to the choices given, is:
C. [tex]\(\cos 60^\circ = \frac{x}{10} ; x=5\)[/tex] feet
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.