Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Which of the following sets of points are vertices of a right triangle?

A. [tex]$A(-1,-3), B(4,-3), C(2,-1)$[/tex]
B. [tex]$A(-1,1), B(3,5), C(4,-4)$[/tex]
C. [tex]$A(-1,3), B(-4,-3), C(-4,1)$[/tex]
D. [tex]$A(-2,2), B(1,-4), C(4,2)$[/tex]

Sagot :

To determine which set of points forms the vertices of a right triangle, we need to verify if these points satisfy the Pythagorean theorem: \(a^2 + b^2 = c^2\), for some permutation of sides \(a\), \(b\), and \(c\), where \(c\) is the hypotenuse.

### Set 1: \(A(-1,-3), B(4,-3), C(2,-1)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(4 - (-1))^2 + ((-3) - (-3))^2} = \sqrt{5^2 + 0} = 5\)
- \(BC\): \(\sqrt{(2 - 4)^2 + ((-1) - (-3))^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2\sqrt{2}\)
- \(CA\): \(\sqrt{(2 - (-1))^2 + ((-1) - (-3))^2} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}\)

2. Check for the Pythagorean theorem:
- \(5^2 + (\sqrt{8})^2 = 25 + 8 \neq 13\)
- \(5^2 + (\sqrt{13})^2 = 25 + 13 \neq 8\)
- \((\sqrt{8})^2 + (\sqrt{13})^2 = 8 + 13 \neq 25\)

This set does not form a right triangle.

### Set 2: \(A(-1,1), B(3,5), C(4,-4)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(3 - (-1))^2 + (5 - 1)^2} = \sqrt{4^2 + 4^2} = \sqrt{16 + 16} = 4\sqrt{2}\)
- \(BC\): \(\sqrt{(4 - 3)^2 + (-4 - 5)^2} = \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82}\)
- \(CA\): \(\sqrt{(4 - (-1))^2 + (-4 - 1)^2} = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = 5\sqrt{2}\)

2. Check for the Pythagorean theorem:
- \((4\sqrt{2})^2 + (5\sqrt{2})^2 = 32 + 50 = 82\)
- \(\sqrt{82}^2 = 82\)

This set satisfies the Pythagorean theorem, implying it forms a right triangle.

### Set 3: \(A(-1,3), B(-4,-3), C(-4,1)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(-4 - (-1))^2 + (-3 - 3)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(-4 - (-4))^2 + (1 - (-3))^2} = \sqrt{0 + 4^2} = 4\)
- \(CA\): \(\sqrt{(-4 - (-1))^2 + (1 - 3)^2} = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}\)

2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 4^2 = 45 + 16 \neq 13\)
- \((4)^2 + (\sqrt{13})^2 = 16 + 13 \neq 45\)
- \((3\sqrt{5})^2 + (\sqrt{13})^2 = 45 + 13 \neq 16\)

This set does not form a right triangle.

### Set 4: \(A(-2,2), B(1,-4), C(4,2)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(1 - (-2))^2 + (-4 - 2)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(4 - 1)^2 + (2 - (-4))^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(CA\): \(\sqrt{(4 - (-2))^2 + (2 - 2)^2} = \sqrt{6^2 + 0} = 6\)

2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 6^2 = 45 + 36 \neq 45\)
- \((3\sqrt{5})^2 + (3\sqrt{5})^2 = 45 + 45 \neq 36\)
- \(6^2 + (3\sqrt{5})^2 = 36 + 45 \neq 45\)

This set does not form a right triangle.

### Conclusion:
The second set of points, [tex]\(A(-1,1), B(3,5), C(4,-4)\)[/tex], is the only set that forms the vertices of a right triangle.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.