Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Which of the following sets of points are vertices of a right triangle?

A. [tex]$A(-1,-3), B(4,-3), C(2,-1)$[/tex]
B. [tex]$A(-1,1), B(3,5), C(4,-4)$[/tex]
C. [tex]$A(-1,3), B(-4,-3), C(-4,1)$[/tex]
D. [tex]$A(-2,2), B(1,-4), C(4,2)$[/tex]


Sagot :

To determine which set of points forms the vertices of a right triangle, we need to verify if these points satisfy the Pythagorean theorem: \(a^2 + b^2 = c^2\), for some permutation of sides \(a\), \(b\), and \(c\), where \(c\) is the hypotenuse.

### Set 1: \(A(-1,-3), B(4,-3), C(2,-1)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(4 - (-1))^2 + ((-3) - (-3))^2} = \sqrt{5^2 + 0} = 5\)
- \(BC\): \(\sqrt{(2 - 4)^2 + ((-1) - (-3))^2} = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} \approx 2\sqrt{2}\)
- \(CA\): \(\sqrt{(2 - (-1))^2 + ((-1) - (-3))^2} = \sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}\)

2. Check for the Pythagorean theorem:
- \(5^2 + (\sqrt{8})^2 = 25 + 8 \neq 13\)
- \(5^2 + (\sqrt{13})^2 = 25 + 13 \neq 8\)
- \((\sqrt{8})^2 + (\sqrt{13})^2 = 8 + 13 \neq 25\)

This set does not form a right triangle.

### Set 2: \(A(-1,1), B(3,5), C(4,-4)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(3 - (-1))^2 + (5 - 1)^2} = \sqrt{4^2 + 4^2} = \sqrt{16 + 16} = 4\sqrt{2}\)
- \(BC\): \(\sqrt{(4 - 3)^2 + (-4 - 5)^2} = \sqrt{1^2 + (-9)^2} = \sqrt{1 + 81} = \sqrt{82}\)
- \(CA\): \(\sqrt{(4 - (-1))^2 + (-4 - 1)^2} = \sqrt{5^2 + (-5)^2} = \sqrt{25 + 25} = 5\sqrt{2}\)

2. Check for the Pythagorean theorem:
- \((4\sqrt{2})^2 + (5\sqrt{2})^2 = 32 + 50 = 82\)
- \(\sqrt{82}^2 = 82\)

This set satisfies the Pythagorean theorem, implying it forms a right triangle.

### Set 3: \(A(-1,3), B(-4,-3), C(-4,1)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(-4 - (-1))^2 + (-3 - 3)^2} = \sqrt{(-3)^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(-4 - (-4))^2 + (1 - (-3))^2} = \sqrt{0 + 4^2} = 4\)
- \(CA\): \(\sqrt{(-4 - (-1))^2 + (1 - 3)^2} = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13}\)

2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 4^2 = 45 + 16 \neq 13\)
- \((4)^2 + (\sqrt{13})^2 = 16 + 13 \neq 45\)
- \((3\sqrt{5})^2 + (\sqrt{13})^2 = 45 + 13 \neq 16\)

This set does not form a right triangle.

### Set 4: \(A(-2,2), B(1,-4), C(4,2)\)

1. Calculate the distances between the points:
- \(AB\): \(\sqrt{(1 - (-2))^2 + (-4 - 2)^2} = \sqrt{3^2 + (-6)^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(BC\): \(\sqrt{(4 - 1)^2 + (2 - (-4))^2} = \sqrt{3^2 + 6^2} = \sqrt{9 + 36} = \sqrt{45} = 3\sqrt{5}\)
- \(CA\): \(\sqrt{(4 - (-2))^2 + (2 - 2)^2} = \sqrt{6^2 + 0} = 6\)

2. Check for the Pythagorean theorem:
- \((3\sqrt{5})^2 + 6^2 = 45 + 36 \neq 45\)
- \((3\sqrt{5})^2 + (3\sqrt{5})^2 = 45 + 45 \neq 36\)
- \(6^2 + (3\sqrt{5})^2 = 36 + 45 \neq 45\)

This set does not form a right triangle.

### Conclusion:
The second set of points, [tex]\(A(-1,1), B(3,5), C(4,-4)\)[/tex], is the only set that forms the vertices of a right triangle.