Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze the linear function \( f(x) = 2x - 8 \) step-by-step:
### (a) x-intercept
To find the x-intercept, we need to set \( f(x) = 0 \) and solve for \( x \).
[tex]\[ 0 = 2x - 8 \][/tex]
Solving for \( x \):
[tex]\[ 2x = 8 \implies x = 4 \][/tex]
Thus, the x-intercept is \( (4, 0) \).
### (b) y-intercept
To find the y-intercept, we need to set \( x = 0 \) and solve for \( f(x) \).
[tex]\[ y = 2(0) - 8 \][/tex]
Simplifying this:
[tex]\[ y = -8 \][/tex]
Thus, the y-intercept is \( (0, -8) \).
### (c) Domain
The domain of any linear function is all real numbers. This is because a line extends infinitely in both directions along the x-axis.
So, the domain is \( \text{all real numbers} \).
### (d) Range
Similarly, the range of any linear function is all real numbers. This is because a line extends infinitely in both directions along the y-axis.
So, the range is \( \text{all real numbers} \).
### (e) Slope of the line
The slope of the linear function \( f(x) = 2x - 8 \) is the coefficient of \( x \). Here, the slope is \( 2 \).
### Graphing the function
To graph the function \( f(x) = 2x - 8 \), we use the intercepts as reference points. Plot the x-intercept \( (4, 0) \) and the y-intercept \( (0, -8) \) on a coordinate plane. Draw a straight line through these points to represent the linear function.
In summary:
- The x-intercept is \((4, 0)\),
- The y-intercept is \((0, -8)\),
- The domain is all real numbers,
- The range is all real numbers,
- The slope is \(2\).
You can now use these points and information to graph the linear function accurately.
### (a) x-intercept
To find the x-intercept, we need to set \( f(x) = 0 \) and solve for \( x \).
[tex]\[ 0 = 2x - 8 \][/tex]
Solving for \( x \):
[tex]\[ 2x = 8 \implies x = 4 \][/tex]
Thus, the x-intercept is \( (4, 0) \).
### (b) y-intercept
To find the y-intercept, we need to set \( x = 0 \) and solve for \( f(x) \).
[tex]\[ y = 2(0) - 8 \][/tex]
Simplifying this:
[tex]\[ y = -8 \][/tex]
Thus, the y-intercept is \( (0, -8) \).
### (c) Domain
The domain of any linear function is all real numbers. This is because a line extends infinitely in both directions along the x-axis.
So, the domain is \( \text{all real numbers} \).
### (d) Range
Similarly, the range of any linear function is all real numbers. This is because a line extends infinitely in both directions along the y-axis.
So, the range is \( \text{all real numbers} \).
### (e) Slope of the line
The slope of the linear function \( f(x) = 2x - 8 \) is the coefficient of \( x \). Here, the slope is \( 2 \).
### Graphing the function
To graph the function \( f(x) = 2x - 8 \), we use the intercepts as reference points. Plot the x-intercept \( (4, 0) \) and the y-intercept \( (0, -8) \) on a coordinate plane. Draw a straight line through these points to represent the linear function.
In summary:
- The x-intercept is \((4, 0)\),
- The y-intercept is \((0, -8)\),
- The domain is all real numbers,
- The range is all real numbers,
- The slope is \(2\).
You can now use these points and information to graph the linear function accurately.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.