Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
approximately 3 days
Step-by-step explanation:
Given:
- population = 45000
- litres per person per day = 12
- radius = 7 meters
- height = 20 meters
Volume of the cylindrical reservoir when full
[tex]volume_{full} = \pi \times (radius^2) \times height[/tex]
[tex]volume_{full} = \pi \times (7m^2) \times 20m[/tex]
[tex]volume_{full} = \pi \times (49m^2) \times 20m[/tex]
[tex]volume_{full} =980 \pi m^3[/tex]
Convert cubic meters to litres (1 cubic meter = 1000 litres)
volume full litres = [tex]980\pi m^3 \times 1000[/tex]
= [tex]980000\pi \text{ liters}[/tex]
Half-filled volume
volume half litres = [tex]\frac{980000\pi \text{ liters}}{2}[/tex]
= [tex]490000\pi \text{ liters}[/tex]
Daily water consumption of the community
daily consumption = [tex]population\times \text{litres per person per day}[/tex]
= 540,000 liters
Number of days the water will last
[tex]days =\frac{ \text{volume half litres}}{ \text{daily consumption}}[/tex]
[tex]days =\frac{ 490000 \pi }{ 540000}[/tex]
[tex]days \approx 0.9074 \pi \implies 2.85 \: \: days[/tex]
Round to the nearest day
2.85 being above 5 in the decimal digits, we will add 1 to it, making it 3.
Therefore, the reservoir will last for approximately 3 days
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.