At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem, we need to determine the temperature on the additional day that allows the new mean temperature to be 30°F. Here is a detailed step-by-step solution:
1. Understand the original data:
Kurt has the following recorded temperatures:
[tex]\[ 27, 28, 28, 28, 29, 29, 30, 31, 31 \][/tex]
Let's count the number of days for which temperatures were recorded:
[tex]\[ \text{Number of days} = 9 \][/tex]
2. Calculate the sum of the original temperatures:
[tex]\[ \text{Sum of original temperatures} = 27 + 28 + 28 + 28 + 29 + 29 + 30 + 31 + 31 \][/tex]
[tex]\[ = 27 + (3 \times 28) + (2 \times 29) + 30 + (2 \times 31) \][/tex]
[tex]\[ = 27 + 84 + 58 + 30 + 62 \][/tex]
[tex]\[ = 261 \][/tex]
3. Determine the new mean temperature
The new mean temperature after including the temperature of the new day is 30°F.
4. Set up the equation to find the new temperature:
Let's assume the temperature on the additional day is \( x \).
The equation for the new mean temperature is:
[tex]\[ \text{New mean} = 30 = \frac{\text{Sum of original temperatures} + x}{\text{Number of days} + 1} \][/tex]
Plugging the values into the equation:
[tex]\[ 30 = \frac{261 + x}{10} \][/tex]
5. Solve for \( x \):
Multiply both sides of the equation by 10 to isolate \( x \):
[tex]\[ 30 \times 10 = 261 + x \][/tex]
[tex]\[ 300 = 261 + x \][/tex]
Subtract 261 from both sides:
[tex]\[ x = 300 - 261 \][/tex]
[tex]\[ x = 39 \][/tex]
Thus, the temperature on the additional day is [tex]\( 39^\circ F \)[/tex].
1. Understand the original data:
Kurt has the following recorded temperatures:
[tex]\[ 27, 28, 28, 28, 29, 29, 30, 31, 31 \][/tex]
Let's count the number of days for which temperatures were recorded:
[tex]\[ \text{Number of days} = 9 \][/tex]
2. Calculate the sum of the original temperatures:
[tex]\[ \text{Sum of original temperatures} = 27 + 28 + 28 + 28 + 29 + 29 + 30 + 31 + 31 \][/tex]
[tex]\[ = 27 + (3 \times 28) + (2 \times 29) + 30 + (2 \times 31) \][/tex]
[tex]\[ = 27 + 84 + 58 + 30 + 62 \][/tex]
[tex]\[ = 261 \][/tex]
3. Determine the new mean temperature
The new mean temperature after including the temperature of the new day is 30°F.
4. Set up the equation to find the new temperature:
Let's assume the temperature on the additional day is \( x \).
The equation for the new mean temperature is:
[tex]\[ \text{New mean} = 30 = \frac{\text{Sum of original temperatures} + x}{\text{Number of days} + 1} \][/tex]
Plugging the values into the equation:
[tex]\[ 30 = \frac{261 + x}{10} \][/tex]
5. Solve for \( x \):
Multiply both sides of the equation by 10 to isolate \( x \):
[tex]\[ 30 \times 10 = 261 + x \][/tex]
[tex]\[ 300 = 261 + x \][/tex]
Subtract 261 from both sides:
[tex]\[ x = 300 - 261 \][/tex]
[tex]\[ x = 39 \][/tex]
Thus, the temperature on the additional day is [tex]\( 39^\circ F \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.