Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve this problem, we first need to recognize the given parameters of the geometric sequence. You have the first term \(a_1\) and the common ratio \(r\) for the sequence. The general form for the \(n\)-th term of a geometric sequence is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the given sequence:
[tex]\[ a_n = -256 \left(-\frac{1}{4}\right)^{n-1} \][/tex]
Here, \(a_1 = -256\) and \(r = -\frac{1}{4}\).
Next, we need to find the sum of the first 17 terms of this geometric series. The formula for the sum of the first \(n\) terms of a geometric series \(S_n\) is:
[tex]\[ S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \][/tex]
Given:
- \(a_1 = -256\)
- \(r = -\frac{1}{4}\)
- \(n = 17\)
Plugging these values into the sum formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 - \left(-\frac{1}{4}\right)} \][/tex]
Now, let's break down the calculation:
1. Calculate \( \left(-\frac{1}{4}\right)^{17} \):
Since \(\left(-\frac{1}{4}\right)\) raised to an odd power remains negative, you would calculate:
[tex]\[ r^{17} = \left(-\frac{1}{4}\right)^{17} \][/tex]
2. Substitute \(\left(-\frac{1}{4}\right)^{17}\) in the formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 + \frac{1}{4}} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + \frac{1}{4} = \frac{5}{4} \][/tex]
4. The numerator would be:
[tex]\[ 1 - \left(-\frac{1}{4}\right)^{17} \][/tex]
Putting it all together:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{\frac{5}{4}} \][/tex]
Multiplying:
[tex]\[ S_{17} = -256 \cdot \frac{4}{5} \left(1 - \left(-\frac{1}{4}\right)^{17}\right) \][/tex]
The numerical calculation results in:
[tex]\[ S_{17} \approx -204.80000001192093 \][/tex]
Approximating this sum to the nearest tenth:
[tex]\[ S_{17} \approx -204.8 \][/tex]
Thus, the approximate sum of the first 17 terms to the nearest tenth is:
[tex]\[ \boxed{-204.8} \][/tex]
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the given sequence:
[tex]\[ a_n = -256 \left(-\frac{1}{4}\right)^{n-1} \][/tex]
Here, \(a_1 = -256\) and \(r = -\frac{1}{4}\).
Next, we need to find the sum of the first 17 terms of this geometric series. The formula for the sum of the first \(n\) terms of a geometric series \(S_n\) is:
[tex]\[ S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \][/tex]
Given:
- \(a_1 = -256\)
- \(r = -\frac{1}{4}\)
- \(n = 17\)
Plugging these values into the sum formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 - \left(-\frac{1}{4}\right)} \][/tex]
Now, let's break down the calculation:
1. Calculate \( \left(-\frac{1}{4}\right)^{17} \):
Since \(\left(-\frac{1}{4}\right)\) raised to an odd power remains negative, you would calculate:
[tex]\[ r^{17} = \left(-\frac{1}{4}\right)^{17} \][/tex]
2. Substitute \(\left(-\frac{1}{4}\right)^{17}\) in the formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 + \frac{1}{4}} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + \frac{1}{4} = \frac{5}{4} \][/tex]
4. The numerator would be:
[tex]\[ 1 - \left(-\frac{1}{4}\right)^{17} \][/tex]
Putting it all together:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{\frac{5}{4}} \][/tex]
Multiplying:
[tex]\[ S_{17} = -256 \cdot \frac{4}{5} \left(1 - \left(-\frac{1}{4}\right)^{17}\right) \][/tex]
The numerical calculation results in:
[tex]\[ S_{17} \approx -204.80000001192093 \][/tex]
Approximating this sum to the nearest tenth:
[tex]\[ S_{17} \approx -204.8 \][/tex]
Thus, the approximate sum of the first 17 terms to the nearest tenth is:
[tex]\[ \boxed{-204.8} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.