Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To solve this problem, we first need to recognize the given parameters of the geometric sequence. You have the first term \(a_1\) and the common ratio \(r\) for the sequence. The general form for the \(n\)-th term of a geometric sequence is:
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the given sequence:
[tex]\[ a_n = -256 \left(-\frac{1}{4}\right)^{n-1} \][/tex]
Here, \(a_1 = -256\) and \(r = -\frac{1}{4}\).
Next, we need to find the sum of the first 17 terms of this geometric series. The formula for the sum of the first \(n\) terms of a geometric series \(S_n\) is:
[tex]\[ S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \][/tex]
Given:
- \(a_1 = -256\)
- \(r = -\frac{1}{4}\)
- \(n = 17\)
Plugging these values into the sum formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 - \left(-\frac{1}{4}\right)} \][/tex]
Now, let's break down the calculation:
1. Calculate \( \left(-\frac{1}{4}\right)^{17} \):
Since \(\left(-\frac{1}{4}\right)\) raised to an odd power remains negative, you would calculate:
[tex]\[ r^{17} = \left(-\frac{1}{4}\right)^{17} \][/tex]
2. Substitute \(\left(-\frac{1}{4}\right)^{17}\) in the formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 + \frac{1}{4}} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + \frac{1}{4} = \frac{5}{4} \][/tex]
4. The numerator would be:
[tex]\[ 1 - \left(-\frac{1}{4}\right)^{17} \][/tex]
Putting it all together:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{\frac{5}{4}} \][/tex]
Multiplying:
[tex]\[ S_{17} = -256 \cdot \frac{4}{5} \left(1 - \left(-\frac{1}{4}\right)^{17}\right) \][/tex]
The numerical calculation results in:
[tex]\[ S_{17} \approx -204.80000001192093 \][/tex]
Approximating this sum to the nearest tenth:
[tex]\[ S_{17} \approx -204.8 \][/tex]
Thus, the approximate sum of the first 17 terms to the nearest tenth is:
[tex]\[ \boxed{-204.8} \][/tex]
[tex]\[ a_n = a_1 \cdot r^{n-1} \][/tex]
For the given sequence:
[tex]\[ a_n = -256 \left(-\frac{1}{4}\right)^{n-1} \][/tex]
Here, \(a_1 = -256\) and \(r = -\frac{1}{4}\).
Next, we need to find the sum of the first 17 terms of this geometric series. The formula for the sum of the first \(n\) terms of a geometric series \(S_n\) is:
[tex]\[ S_n = a_1 \cdot \frac{1 - r^n}{1 - r} \][/tex]
Given:
- \(a_1 = -256\)
- \(r = -\frac{1}{4}\)
- \(n = 17\)
Plugging these values into the sum formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 - \left(-\frac{1}{4}\right)} \][/tex]
Now, let's break down the calculation:
1. Calculate \( \left(-\frac{1}{4}\right)^{17} \):
Since \(\left(-\frac{1}{4}\right)\) raised to an odd power remains negative, you would calculate:
[tex]\[ r^{17} = \left(-\frac{1}{4}\right)^{17} \][/tex]
2. Substitute \(\left(-\frac{1}{4}\right)^{17}\) in the formula:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{1 + \frac{1}{4}} \][/tex]
3. Simplify the denominator:
[tex]\[ 1 + \frac{1}{4} = \frac{5}{4} \][/tex]
4. The numerator would be:
[tex]\[ 1 - \left(-\frac{1}{4}\right)^{17} \][/tex]
Putting it all together:
[tex]\[ S_{17} = -256 \cdot \frac{1 - \left(-\frac{1}{4}\right)^{17}}{\frac{5}{4}} \][/tex]
Multiplying:
[tex]\[ S_{17} = -256 \cdot \frac{4}{5} \left(1 - \left(-\frac{1}{4}\right)^{17}\right) \][/tex]
The numerical calculation results in:
[tex]\[ S_{17} \approx -204.80000001192093 \][/tex]
Approximating this sum to the nearest tenth:
[tex]\[ S_{17} \approx -204.8 \][/tex]
Thus, the approximate sum of the first 17 terms to the nearest tenth is:
[tex]\[ \boxed{-204.8} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.