Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's solve the problem step-by-step:
1. Determine the slope of line \( \overleftrightarrow{A B} \):
The coordinates are \( A = (14, -1) \) and \( B = (2, 1) \).
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here,
[tex]\[ m = \frac{1 - (-1)}{2 - 14} = \frac{2}{-12} = -\frac{1}{6} \][/tex]
So, the slope of \( \overleftrightarrow{A B} \) is \(-\frac{1}{6}\).
2. Find the y-intercept of line \( \overleftrightarrow{A B} \):
The equation of a line in slope-intercept form is \( y = mx + c \). We already have \( m = -\frac{1}{6} \).
To find \( c \) (the y-intercept), we use the point \( B \) which is \((2, 1)\):
[tex]\[ 1 = -\frac{1}{6} \cdot 2 + c \][/tex]
Simplifying, we get:
[tex]\[ 1 = -\frac{1}{3} + c \implies c = 1 + \frac{1}{3} = \frac{4}{3} \][/tex]
So, the y-intercept is \(\frac{4}{3}\) and the equation of \( \overleftrightarrow{A B} \) is:
[tex]\[ y = -\frac{1}{6}x + \frac{4}{3} \][/tex]
3. Find the slope of line \( \overleftrightarrow{B C} \):
Since \( \overleftrightarrow{B C} \) is perpendicular to \( \overleftrightarrow{A B} \), the product of their slopes is \(-1\).
Let \( m_{BC} \) be the slope of \( \overleftrightarrow{B C} \). Then:
[tex]\[ m_{BC} \cdot \left( -\frac{1}{6} \right) = -1 \implies m_{BC} = 6 \][/tex]
Thus, the slope of line \( \overleftrightarrow{B C} \) is \( 6 \).
4. Determine the x-coordinate of point \( C \) given its y-coordinate is 13:
The equation of \( \overleftrightarrow{B C} \) can be written using the slope-intercept form and the point \( B = (2, 1) \):
[tex]\[ y - 1 = 6(x - 2) \][/tex]
Given \( y = 13 \):
[tex]\[ 13 - 1 = 6(x - 2) \][/tex]
Simplifying this equation:
[tex]\[ 12 = 6(x - 2) \implies 2 = x - 2 \implies x = 4 \][/tex]
So, the x-coordinate of point \( C \) is \( 4 \).
Now, let's fill in the boxes in the original problem statement accordingly:
If the coordinates of \( A \) and \( B \) are \( (14, -1) \) and \( (2, 1) \), respectively, the \( y \)-intercept of \( \overleftrightarrow{A B} \) is \( y = -\frac{1}{6}x + \frac{4}{3} \).
If the [tex]\( y \)[/tex]-coordinate of point [tex]\( C \)[/tex] is [tex]\( 13 \)[/tex], its [tex]\( x \)[/tex]-coordinate is [tex]\( 4 \)[/tex].
1. Determine the slope of line \( \overleftrightarrow{A B} \):
The coordinates are \( A = (14, -1) \) and \( B = (2, 1) \).
The formula for the slope \(m\) between two points \((x_1, y_1)\) and \((x_2, y_2)\) is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here,
[tex]\[ m = \frac{1 - (-1)}{2 - 14} = \frac{2}{-12} = -\frac{1}{6} \][/tex]
So, the slope of \( \overleftrightarrow{A B} \) is \(-\frac{1}{6}\).
2. Find the y-intercept of line \( \overleftrightarrow{A B} \):
The equation of a line in slope-intercept form is \( y = mx + c \). We already have \( m = -\frac{1}{6} \).
To find \( c \) (the y-intercept), we use the point \( B \) which is \((2, 1)\):
[tex]\[ 1 = -\frac{1}{6} \cdot 2 + c \][/tex]
Simplifying, we get:
[tex]\[ 1 = -\frac{1}{3} + c \implies c = 1 + \frac{1}{3} = \frac{4}{3} \][/tex]
So, the y-intercept is \(\frac{4}{3}\) and the equation of \( \overleftrightarrow{A B} \) is:
[tex]\[ y = -\frac{1}{6}x + \frac{4}{3} \][/tex]
3. Find the slope of line \( \overleftrightarrow{B C} \):
Since \( \overleftrightarrow{B C} \) is perpendicular to \( \overleftrightarrow{A B} \), the product of their slopes is \(-1\).
Let \( m_{BC} \) be the slope of \( \overleftrightarrow{B C} \). Then:
[tex]\[ m_{BC} \cdot \left( -\frac{1}{6} \right) = -1 \implies m_{BC} = 6 \][/tex]
Thus, the slope of line \( \overleftrightarrow{B C} \) is \( 6 \).
4. Determine the x-coordinate of point \( C \) given its y-coordinate is 13:
The equation of \( \overleftrightarrow{B C} \) can be written using the slope-intercept form and the point \( B = (2, 1) \):
[tex]\[ y - 1 = 6(x - 2) \][/tex]
Given \( y = 13 \):
[tex]\[ 13 - 1 = 6(x - 2) \][/tex]
Simplifying this equation:
[tex]\[ 12 = 6(x - 2) \implies 2 = x - 2 \implies x = 4 \][/tex]
So, the x-coordinate of point \( C \) is \( 4 \).
Now, let's fill in the boxes in the original problem statement accordingly:
If the coordinates of \( A \) and \( B \) are \( (14, -1) \) and \( (2, 1) \), respectively, the \( y \)-intercept of \( \overleftrightarrow{A B} \) is \( y = -\frac{1}{6}x + \frac{4}{3} \).
If the [tex]\( y \)[/tex]-coordinate of point [tex]\( C \)[/tex] is [tex]\( 13 \)[/tex], its [tex]\( x \)[/tex]-coordinate is [tex]\( 4 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.