Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

If [tex]\( h(x) = 3x + 5 \)[/tex], find the values of [tex]\( x \)[/tex] for which [tex]\( h(x) \ \textgreater \ 17 \)[/tex].

Sagot :

Sure! Let's solve the inequality to find the values of \( x \) for which \( h(x) > 17 \), where \( h(x) = 3x + 5 \).

1. Start with the inequality:
[tex]\[ 3x + 5 > 17 \][/tex]

2. To isolate the term with \( x \), subtract 5 from both sides of the inequality:
[tex]\[ 3x + 5 - 5 > 17 - 5 \][/tex]
Simplifying this gives:
[tex]\[ 3x > 12 \][/tex]

3. Now, to solve for \( x \), divide both sides of the inequality by 3:
[tex]\[ \frac{3x}{3} > \frac{12}{3} \][/tex]
Simplifying this gives:
[tex]\[ x > 4 \][/tex]

Therefore, the values of [tex]\( x \)[/tex] for which [tex]\( h(x) > 17 \)[/tex] are [tex]\( x > 4 \)[/tex].