Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Ask your questions and receive precise answers from experienced professionals across different disciplines. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Enter the net ionic equation, including phases, for the reaction of [tex]$AgNO _3[tex]$[/tex] (aq) and [tex]$[/tex]KCl$[/tex] (aq). Refer to the solubility rules as needed.

Net ionic equation:
[tex]Ag^{+} (aq) + Cl^{-} (aq) \rightarrow AgCl (s)[/tex]


Sagot :

Sure, let's go through the steps to determine the net ionic equation for the reaction between silver nitrate ([tex]$AgNO_3$[/tex]) and potassium chloride ([tex]$KCl$[/tex]).

### Step 1: Write the balanced molecular equation
First, we need to write the balanced molecular equation for the reaction:

[tex]\[ AgNO_3 (aq) + KCl (aq) \rightarrow AgCl (s) + KNO_3 (aq) \][/tex]

### Step 2: Write the complete ionic equation
Next, break down all the soluble strong electrolytes (compounds that dissolve in water) into their constituent ions:

[tex]\[ Ag^+ (aq) + NO_3^- (aq) + K^+ (aq) + Cl^- (aq) \rightarrow AgCl (s) + K^+ (aq) + NO_3^- (aq) \][/tex]

### Step 3: Identify and remove the spectator ions
Spectator ions are ions that appear on both sides of the complete ionic equation and do not participate in the actual reaction. Here, the [tex]$K^+$[/tex] and [tex]$NO_3^-$[/tex] ions are spectator ions.

Since they appear unchanged on both sides of the equation, we can remove them to find the net ionic equation.

### Step 4: Write the net ionic equation
After removing the spectator ions, we get the net ionic equation, which includes only the species that participate in the reaction:

[tex]\[ Ag^+ (aq) + Cl^- (aq) \rightarrow AgCl (s) \][/tex]

This net ionic equation shows that silver ions ([tex]$Ag^+$[/tex]) react with chloride ions ([tex]$Cl^-$[/tex]) to form solid silver chloride ([tex]$AgCl$[/tex]). The phases are indicated clearly: (aq) for aqueous and (s) for solid.