Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the coordinates of the center of mass for two objects with masses \( m_1 \) and \( m_2 \), located at coordinates \((x_1, y_1)\) and \((x_2, y_2)\) respectively, you can use the following formulas:
[tex]\[ x_{\text{cm}} = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2} \][/tex]
[tex]\[ y_{\text{cm}} = \frac{m_1 \cdot y_1 + m_2 \cdot y_2}{m_1 + m_2} \][/tex]
Let's solve the problem with the given data:
- Mass of the first object \( m_1 = 5 \)
- Coordinates of the first object \((x_1, y_1) = (2, 3)\)
- Mass of the second object \( m_2 = 10 \)
- Coordinates of the second object \((x_2, y_2) = (8, 6)\)
First, let's find the x-coordinate of the center of mass (\( x_{\text{cm}} \)):
[tex]\[ x_{\text{cm}} = \frac{(5 \cdot 2) + (10 \cdot 8)}{5 + 10} = \frac{10 + 80}{15} = \frac{90}{15} = 6.0 \][/tex]
Next, we find the y-coordinate of the center of mass (\( y_{\text{cm}} \)):
[tex]\[ y_{\text{cm}} = \frac{(5 \cdot 3) + (10 \cdot 6)}{5 + 10} = \frac{15 + 60}{15} = \frac{75}{15} = 5.0 \][/tex]
Therefore, the coordinates of the center of mass are:
[tex]\[ \boxed{(6.0, 5.0)} \][/tex]
[tex]\[ x_{\text{cm}} = \frac{m_1 \cdot x_1 + m_2 \cdot x_2}{m_1 + m_2} \][/tex]
[tex]\[ y_{\text{cm}} = \frac{m_1 \cdot y_1 + m_2 \cdot y_2}{m_1 + m_2} \][/tex]
Let's solve the problem with the given data:
- Mass of the first object \( m_1 = 5 \)
- Coordinates of the first object \((x_1, y_1) = (2, 3)\)
- Mass of the second object \( m_2 = 10 \)
- Coordinates of the second object \((x_2, y_2) = (8, 6)\)
First, let's find the x-coordinate of the center of mass (\( x_{\text{cm}} \)):
[tex]\[ x_{\text{cm}} = \frac{(5 \cdot 2) + (10 \cdot 8)}{5 + 10} = \frac{10 + 80}{15} = \frac{90}{15} = 6.0 \][/tex]
Next, we find the y-coordinate of the center of mass (\( y_{\text{cm}} \)):
[tex]\[ y_{\text{cm}} = \frac{(5 \cdot 3) + (10 \cdot 6)}{5 + 10} = \frac{15 + 60}{15} = \frac{75}{15} = 5.0 \][/tex]
Therefore, the coordinates of the center of mass are:
[tex]\[ \boxed{(6.0, 5.0)} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.