Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the equation of the second object's path, we need to find a linear equation that is parallel to the first object's path and passes through the point \((t=0, d=1)\).
1. Identify the slope of the first object's path:
The equation of the first object is given by:
[tex]\[ d = 2.5t + 22 \][/tex]
The slope (m) of this line is 2.5.
2. Determine the slope of the second object's path:
Since the second object's path is parallel to the first object's path, it must have the same slope. Therefore, the slope of the second object's path is also 2.5.
3. Use the point-slope form to find the y-intercept (b) of the second object's path:
The point-slope form of a linear equation is:
[tex]\[ d = mt + b \][/tex]
Since the second object's path passes through the point \((t=0, d=1)\), we can substitute these values into the equation to find \(b\).
Substituting \(t = 0\) and \(d = 1\) into the equation:
[tex]\[ 1 = 2.5 \cdot 0 + b \][/tex]
Simplifying, we get:
[tex]\[ b = 1 \][/tex]
4. Write the final equation:
Combining the slope \(m = 2.5\) and the y-intercept \(b = 1\), we get the equation of the second object's path:
[tex]\[ d = 2.5t + 1 \][/tex]
Therefore, the correct equation of the second object's path is:
A. [tex]\( d = 2.5t + 1 \)[/tex]
1. Identify the slope of the first object's path:
The equation of the first object is given by:
[tex]\[ d = 2.5t + 22 \][/tex]
The slope (m) of this line is 2.5.
2. Determine the slope of the second object's path:
Since the second object's path is parallel to the first object's path, it must have the same slope. Therefore, the slope of the second object's path is also 2.5.
3. Use the point-slope form to find the y-intercept (b) of the second object's path:
The point-slope form of a linear equation is:
[tex]\[ d = mt + b \][/tex]
Since the second object's path passes through the point \((t=0, d=1)\), we can substitute these values into the equation to find \(b\).
Substituting \(t = 0\) and \(d = 1\) into the equation:
[tex]\[ 1 = 2.5 \cdot 0 + b \][/tex]
Simplifying, we get:
[tex]\[ b = 1 \][/tex]
4. Write the final equation:
Combining the slope \(m = 2.5\) and the y-intercept \(b = 1\), we get the equation of the second object's path:
[tex]\[ d = 2.5t + 1 \][/tex]
Therefore, the correct equation of the second object's path is:
A. [tex]\( d = 2.5t + 1 \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.