Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's go through the solution step-by-step:
1. Given Data:
- Mass of the roller coaster car, \( m = 100 \) kilograms.
- Speed at the top of the hill, \( v_{\text{top}} = 3 \) meters/second.
- Speed at the bottom of the hill, \( v_{\text{bottom}} = 2 \times v_{\text{top}} = 2 \times 3 = 6 \) meters/second.
2. Kinetic Energy Calculation:
The formula for kinetic energy is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Kinetic Energy at the Top:
Substitute the values \( m = 100 \) kg and \( v_{\text{top}} = 3 \) m/s into the formula:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times (3^2) = \frac{1}{2} \times 100 \times 9 = 450 \text{ joules} \][/tex]
4. Kinetic Energy at the Bottom:
Substitute the values \( m = 100 \) kg and \( v_{\text{bottom}} = 6 \) m/s into the formula:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times (6^2) = \frac{1}{2} \times 100 \times 36 = 1800 \text{ joules} \][/tex]
5. Ratio of Kinetic Energies:
To find how many times greater the kinetic energy at the bottom is compared to the kinetic energy at the top:
[tex]\[ \text{Ratio} = \frac{KE_{\text{bottom}}}{KE_{\text{top}}} = \frac{1800}{450} = 4 \][/tex]
So, based on the calculations:
- The car's kinetic energy at the bottom is 4 times its kinetic energy at the top.
- The car has 1800 joules of kinetic energy at the bottom of the hill.
Let's fill the blanks with the correct answers.
"The car's kinetic energy at the bottom is 4 times its kinetic energy at the top. The car has 1800 joules of kinetic energy at the bottom of the hill."
1. Given Data:
- Mass of the roller coaster car, \( m = 100 \) kilograms.
- Speed at the top of the hill, \( v_{\text{top}} = 3 \) meters/second.
- Speed at the bottom of the hill, \( v_{\text{bottom}} = 2 \times v_{\text{top}} = 2 \times 3 = 6 \) meters/second.
2. Kinetic Energy Calculation:
The formula for kinetic energy is given by:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
3. Kinetic Energy at the Top:
Substitute the values \( m = 100 \) kg and \( v_{\text{top}} = 3 \) m/s into the formula:
[tex]\[ KE_{\text{top}} = \frac{1}{2} \times 100 \times (3^2) = \frac{1}{2} \times 100 \times 9 = 450 \text{ joules} \][/tex]
4. Kinetic Energy at the Bottom:
Substitute the values \( m = 100 \) kg and \( v_{\text{bottom}} = 6 \) m/s into the formula:
[tex]\[ KE_{\text{bottom}} = \frac{1}{2} \times 100 \times (6^2) = \frac{1}{2} \times 100 \times 36 = 1800 \text{ joules} \][/tex]
5. Ratio of Kinetic Energies:
To find how many times greater the kinetic energy at the bottom is compared to the kinetic energy at the top:
[tex]\[ \text{Ratio} = \frac{KE_{\text{bottom}}}{KE_{\text{top}}} = \frac{1800}{450} = 4 \][/tex]
So, based on the calculations:
- The car's kinetic energy at the bottom is 4 times its kinetic energy at the top.
- The car has 1800 joules of kinetic energy at the bottom of the hill.
Let's fill the blanks with the correct answers.
"The car's kinetic energy at the bottom is 4 times its kinetic energy at the top. The car has 1800 joules of kinetic energy at the bottom of the hill."
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.