Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's go through the steps to graph the function \( f(x) = 2 \sqrt{x+3} \) in detail.
### Step-by-Step Solution:
1. Identify the Domain:
- Since we have a square root function, the expression inside the square root must be non-negative.
- Therefore, \( x + 3 \geq 0 \).
- Solving this inequality, we get \( x \geq -3 \).
- So, the domain of \( f(x) \) is \( x \in [-3, \infty) \).
2. Identify Key Points:
- It can be useful to identify some specific points on the function to help with the plot.
- Let's calculate \( f(x) \) for a few values of \( x \):
[tex]\[ \begin{aligned} &f(-3) = 2 \sqrt{-3 + 3} = 2 \sqrt{0} = 0, \\ &f(0) = 2 \sqrt{0 + 3} = 2 \sqrt{3} \approx 3.46, \\ &f(1) = 2 \sqrt{1 + 3} = 2 \sqrt{4} = 4, \\ &f(4) = 2 \sqrt{4 + 3} = 2 \sqrt{7} \approx 5.29. \end{aligned} \][/tex]
3. Sketch the Graph:
- Now we plot the function using the domain and key points identified above.
- The function starts at \( x = -3 \) with \( f(-3) = 0 \) and increases as \( x \) increases.
- The function is not defined for \( x < -3 \).
4. Observing Function Behavior:
- For very large values of \( x \), \( f(x) \) will also increase but at a diminishing rate because the square root function grows slower than a linear function.
- As \( x \) approaches \(-3 \) from the right, \( f(x) \) approaches 0.
Here's a simple sketch to visualize it:
1. Draw the x-axis and y-axis.
2. Mark the domain starting from \( x = -3 \).
3. Plot the key points:
- \( (-3, 0) \),
- \( (0, \approx3.46) \),
- \( (1, 4) \),
- \( (4, \approx5.29) \).
4. Draw a smooth curve through these points, noting that it starts at the origin of the domain (\( x = -3 \)) and gradually curves upwards as \( x \) increases.
By following these steps, you should have a clear understanding and a precise graph of the function [tex]\( f(x) = 2 \sqrt{x+3} \)[/tex].
### Step-by-Step Solution:
1. Identify the Domain:
- Since we have a square root function, the expression inside the square root must be non-negative.
- Therefore, \( x + 3 \geq 0 \).
- Solving this inequality, we get \( x \geq -3 \).
- So, the domain of \( f(x) \) is \( x \in [-3, \infty) \).
2. Identify Key Points:
- It can be useful to identify some specific points on the function to help with the plot.
- Let's calculate \( f(x) \) for a few values of \( x \):
[tex]\[ \begin{aligned} &f(-3) = 2 \sqrt{-3 + 3} = 2 \sqrt{0} = 0, \\ &f(0) = 2 \sqrt{0 + 3} = 2 \sqrt{3} \approx 3.46, \\ &f(1) = 2 \sqrt{1 + 3} = 2 \sqrt{4} = 4, \\ &f(4) = 2 \sqrt{4 + 3} = 2 \sqrt{7} \approx 5.29. \end{aligned} \][/tex]
3. Sketch the Graph:
- Now we plot the function using the domain and key points identified above.
- The function starts at \( x = -3 \) with \( f(-3) = 0 \) and increases as \( x \) increases.
- The function is not defined for \( x < -3 \).
4. Observing Function Behavior:
- For very large values of \( x \), \( f(x) \) will also increase but at a diminishing rate because the square root function grows slower than a linear function.
- As \( x \) approaches \(-3 \) from the right, \( f(x) \) approaches 0.
Here's a simple sketch to visualize it:
1. Draw the x-axis and y-axis.
2. Mark the domain starting from \( x = -3 \).
3. Plot the key points:
- \( (-3, 0) \),
- \( (0, \approx3.46) \),
- \( (1, 4) \),
- \( (4, \approx5.29) \).
4. Draw a smooth curve through these points, noting that it starts at the origin of the domain (\( x = -3 \)) and gradually curves upwards as \( x \) increases.
By following these steps, you should have a clear understanding and a precise graph of the function [tex]\( f(x) = 2 \sqrt{x+3} \)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.