Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Evaluate the numerical expression [tex]\left(5^{-4}\right)^{\frac{1}{2}}[/tex].

A. 25
B. -25
C. [tex]\frac{1}{25}[/tex]
D. [tex]-\frac{1}{25}[/tex]


Sagot :

Sure, let's evaluate the expression \(\left(5^{-4}\right)^{\frac{1}{2}}\) step by step.

1. Evaluate the inner exponentiation \(5^{-4}\):
- Since the exponent is negative, \(5^{-4}\) can be rewritten as \(\frac{1}{5^4}\).
- Now calculate \(5^4\):
[tex]\[ 5^4 = 5 \times 5 \times 5 \times 5 = 625 \][/tex]
- So, \(5^{-4} = \frac{1}{625}\).

2. Evaluate the outer exponentiation \(\left(\frac{1}{625}\right)^{\frac{1}{2}}\):
- The exponent \(\frac{1}{2}\) signifies taking the square root.
- We need to find the square root of \(\frac{1}{625}\).
[tex]\[ \sqrt{\frac{1}{625}} = \frac{\sqrt{1}}{\sqrt{625}} = \frac{1}{\sqrt{625}} \][/tex]
- Calculate \(\sqrt{625}\):
[tex]\[ \sqrt{625} = 25 \][/tex]
- Therefore, \(\frac{1}{\sqrt{625}} = \frac{1}{25}\).

After evaluating the numerical expression step by step, we find that \(\left(5^{-4}\right)^{\frac{1}{2}} = \frac{1}{25}\).

So, the correct answer is [tex]\(\frac{1}{25}\)[/tex].