Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure, let's evaluate the expression \(\left(5^{-4}\right)^{\frac{1}{2}}\) step by step.
1. Evaluate the inner exponentiation \(5^{-4}\):
- Since the exponent is negative, \(5^{-4}\) can be rewritten as \(\frac{1}{5^4}\).
- Now calculate \(5^4\):
[tex]\[ 5^4 = 5 \times 5 \times 5 \times 5 = 625 \][/tex]
- So, \(5^{-4} = \frac{1}{625}\).
2. Evaluate the outer exponentiation \(\left(\frac{1}{625}\right)^{\frac{1}{2}}\):
- The exponent \(\frac{1}{2}\) signifies taking the square root.
- We need to find the square root of \(\frac{1}{625}\).
[tex]\[ \sqrt{\frac{1}{625}} = \frac{\sqrt{1}}{\sqrt{625}} = \frac{1}{\sqrt{625}} \][/tex]
- Calculate \(\sqrt{625}\):
[tex]\[ \sqrt{625} = 25 \][/tex]
- Therefore, \(\frac{1}{\sqrt{625}} = \frac{1}{25}\).
After evaluating the numerical expression step by step, we find that \(\left(5^{-4}\right)^{\frac{1}{2}} = \frac{1}{25}\).
So, the correct answer is [tex]\(\frac{1}{25}\)[/tex].
1. Evaluate the inner exponentiation \(5^{-4}\):
- Since the exponent is negative, \(5^{-4}\) can be rewritten as \(\frac{1}{5^4}\).
- Now calculate \(5^4\):
[tex]\[ 5^4 = 5 \times 5 \times 5 \times 5 = 625 \][/tex]
- So, \(5^{-4} = \frac{1}{625}\).
2. Evaluate the outer exponentiation \(\left(\frac{1}{625}\right)^{\frac{1}{2}}\):
- The exponent \(\frac{1}{2}\) signifies taking the square root.
- We need to find the square root of \(\frac{1}{625}\).
[tex]\[ \sqrt{\frac{1}{625}} = \frac{\sqrt{1}}{\sqrt{625}} = \frac{1}{\sqrt{625}} \][/tex]
- Calculate \(\sqrt{625}\):
[tex]\[ \sqrt{625} = 25 \][/tex]
- Therefore, \(\frac{1}{\sqrt{625}} = \frac{1}{25}\).
After evaluating the numerical expression step by step, we find that \(\left(5^{-4}\right)^{\frac{1}{2}} = \frac{1}{25}\).
So, the correct answer is [tex]\(\frac{1}{25}\)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.