Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
An exponential decay function generally has the form \( f(x) = A \cdot b^x \), where \( 0 < b < 1 \). Here, \( b \) is the base of the exponential function which dictates the decay, and \( A \) is a constant that can stretch or compress the function vertically. A stretch occurs when the constant \( A \) is greater than 1.
Let's analyze each given option to check for the conditions of an exponential decay function and determine which one represents a stretch.
1. \( f(x) = \frac{1}{5}\left(\frac{1}{5}\right)^x \)
- The base is \( \frac{1}{5} \), which is between 0 and 1. Therefore, it represents exponential decay.
- The constant \( A \) is \( \frac{1}{5} \), which is less than 1.
- This is not a stretch.
2. \( f(x) = \frac{1}{5}(5)^x \)
- The base is \( 5 \), which is greater than 1. This does not represent exponential decay.
- Hence, we discard this option as it is not even an exponential decay function.
3. \( f(x) = 5\left(\frac{1}{5}\right)^x \)
- The base is \( \frac{1}{5} \), which is between 0 and 1, indicating exponential decay.
- The constant \( A \) is \( 5 \), which is greater than 1.
- This represents a stretch of an exponential decay function.
4. \( f(x) = 5(5)^x \)
- The base is \( 5 \), which is greater than 1. This does not represent exponential decay.
- Thus, we discard this option as it is not an exponential decay function.
Based on the analysis, the correct option is:
[tex]\[ f(x) = 5\left(\frac{1}{5}\right)^x \][/tex]
This function meets both criteria for being a stretch of an exponential decay function. The base \( \frac{1}{5} \) is between 0 and 1, indicating decay, and the constant \( 5 \) is greater than 1, indicating a vertical stretch. Therefore, the answer is:
Option 3
Let's analyze each given option to check for the conditions of an exponential decay function and determine which one represents a stretch.
1. \( f(x) = \frac{1}{5}\left(\frac{1}{5}\right)^x \)
- The base is \( \frac{1}{5} \), which is between 0 and 1. Therefore, it represents exponential decay.
- The constant \( A \) is \( \frac{1}{5} \), which is less than 1.
- This is not a stretch.
2. \( f(x) = \frac{1}{5}(5)^x \)
- The base is \( 5 \), which is greater than 1. This does not represent exponential decay.
- Hence, we discard this option as it is not even an exponential decay function.
3. \( f(x) = 5\left(\frac{1}{5}\right)^x \)
- The base is \( \frac{1}{5} \), which is between 0 and 1, indicating exponential decay.
- The constant \( A \) is \( 5 \), which is greater than 1.
- This represents a stretch of an exponential decay function.
4. \( f(x) = 5(5)^x \)
- The base is \( 5 \), which is greater than 1. This does not represent exponential decay.
- Thus, we discard this option as it is not an exponential decay function.
Based on the analysis, the correct option is:
[tex]\[ f(x) = 5\left(\frac{1}{5}\right)^x \][/tex]
This function meets both criteria for being a stretch of an exponential decay function. The base \( \frac{1}{5} \) is between 0 and 1, indicating decay, and the constant \( 5 \) is greater than 1, indicating a vertical stretch. Therefore, the answer is:
Option 3
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.